Forces between silica particles in isopropanol solutions of 1:1 electrolytes

B. Stojimirović, M. Galli, G. Trefalt
{"title":"Forces between silica particles in isopropanol solutions of 1:1 electrolytes","authors":"B. Stojimirović, M. Galli, G. Trefalt","doi":"10.1103/PHYSREVRESEARCH.2.023315","DOIUrl":null,"url":null,"abstract":"Interactions between silica surfaces across isopropanol solutions are measured with colloidal probe technique based on atomic force microscope. In particular, the influence of 1:1 electrolytes on the interactions between silica particles is investigated. A plethora of different forces are found in these systems. Namely, van der Waals, double-layer, attractive non-DLVO, repulsive solvation, and damped oscillatory interactions are observed. The measured decay length of the double-layer repulsion is substantially larger than Debye lengths calculated from nominal salt concentrations. These deviations are caused by pronounced ion pairing in alcohol solutions. At separation below 10 nm, additional attractive and repulsive non-DLVO forces are observed. The former are possibly caused by charge heterogeneities induced by strong ion adsorption, whereas the latter originate from structuring of isopropanol molecules close to the surface. Finally, at increased concentrations the transition from monotonic to damped oscillatory interactions is uncovered.","PeriodicalId":8472,"journal":{"name":"arXiv: Soft Condensed Matter","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.2.023315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Interactions between silica surfaces across isopropanol solutions are measured with colloidal probe technique based on atomic force microscope. In particular, the influence of 1:1 electrolytes on the interactions between silica particles is investigated. A plethora of different forces are found in these systems. Namely, van der Waals, double-layer, attractive non-DLVO, repulsive solvation, and damped oscillatory interactions are observed. The measured decay length of the double-layer repulsion is substantially larger than Debye lengths calculated from nominal salt concentrations. These deviations are caused by pronounced ion pairing in alcohol solutions. At separation below 10 nm, additional attractive and repulsive non-DLVO forces are observed. The former are possibly caused by charge heterogeneities induced by strong ion adsorption, whereas the latter originate from structuring of isopropanol molecules close to the surface. Finally, at increased concentrations the transition from monotonic to damped oscillatory interactions is uncovered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在1:1电解质的异丙醇溶液中二氧化硅颗粒之间的力
采用基于原子力显微镜的胶体探针技术测量了异丙醇溶液中二氧化硅表面之间的相互作用。特别地,研究了1:1电解质对二氧化硅颗粒间相互作用的影响。在这些系统中发现了大量不同的力。即,观察到范德华、双层、吸引非dlvo、排斥溶剂化和阻尼振荡相互作用。测量到的双层斥力的衰减长度大大大于根据标称盐浓度计算的德拜长度。这些偏差是由酒精溶液中明显的离子配对引起的。在10 nm以下的分离处,观察到额外的吸引和排斥非dlvo力。前者可能是由强离子吸附引起的电荷异质性引起的,而后者则是由异丙醇分子靠近表面的结构引起的。最后,在浓度增加时,揭示了从单调到阻尼振荡相互作用的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DNA topology dictates strength and flocculation in DNA-microtubule composites Physics of Suction Cups in Air and in Water Tuning thermal transport in highly cross-linked polymers by bond-induced void engineering Alignment-induced reconfigurable walls for patterning and assembly of liquid crystal skyrmions Theory of Inhomogeneous Calamitic Coulomb Fluids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1