GeoMatch

Ayman Zeidan, Eemil Lagerspetz, Kai Zhao, P. Nurmi, S. Tarkoma, H. Vo
{"title":"GeoMatch","authors":"Ayman Zeidan, Eemil Lagerspetz, Kai Zhao, P. Nurmi, S. Tarkoma, H. Vo","doi":"10.1145/3402904","DOIUrl":null,"url":null,"abstract":"We develop GeoMatch as a novel, scalable, and efficient big-data pipeline for large-scale map matching on Apache Spark. GeoMatch improves existing spatial big-data solutions by utilizing a novel spatial partitioning scheme inspired by Hilbert space-filling curves. Thanks to its partitioning scheme, GeoMatch can effectively balance operations across different processing units and achieve significant performance gains. GeoMatch also incorporates a dynamically adjustable error-correction technique that provides robustness against positioning errors. We demonstrate the effectiveness of GeoMatch through rigorous and extensive empirical benchmarks that consider large-scale urban spatial datasets ranging from 166,253 to 3.78B location measurements. We separately assess execution performance and accuracy of map matching and develop a benchmark framework for evaluating large-scale map matching. Results of our evaluation show up to 27.25-fold performance improvements compared to previous works while achieving better processing accuracy than current solutions. We also showcase the practical potential of GeoMatch with two urban management applications. GeoMatch and our benchmark framework are open-source.","PeriodicalId":93404,"journal":{"name":"ACM/IMS transactions on data science","volume":"15 1","pages":"1 - 30"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IMS transactions on data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3402904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We develop GeoMatch as a novel, scalable, and efficient big-data pipeline for large-scale map matching on Apache Spark. GeoMatch improves existing spatial big-data solutions by utilizing a novel spatial partitioning scheme inspired by Hilbert space-filling curves. Thanks to its partitioning scheme, GeoMatch can effectively balance operations across different processing units and achieve significant performance gains. GeoMatch also incorporates a dynamically adjustable error-correction technique that provides robustness against positioning errors. We demonstrate the effectiveness of GeoMatch through rigorous and extensive empirical benchmarks that consider large-scale urban spatial datasets ranging from 166,253 to 3.78B location measurements. We separately assess execution performance and accuracy of map matching and develop a benchmark framework for evaluating large-scale map matching. Results of our evaluation show up to 27.25-fold performance improvements compared to previous works while achieving better processing accuracy than current solutions. We also showcase the practical potential of GeoMatch with two urban management applications. GeoMatch and our benchmark framework are open-source.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我们在Apache Spark上开发了一个新颖的、可扩展的、高效的大数据管道,用于大规模地图匹配。GeoMatch利用受希尔伯特空间填充曲线启发的新颖空间划分方案,改进了现有的空间大数据解决方案。得益于其分区方案,GeoMatch可以有效地平衡不同处理单元之间的操作,并获得显著的性能提升。GeoMatch还结合了一种动态可调的纠错技术,提供了对定位错误的鲁棒性。我们通过严格和广泛的经验基准来证明GeoMatch的有效性,这些基准考虑了从166,253到3.78B的大规模城市空间数据集的位置测量。我们分别评估了地图匹配的执行性能和准确性,并开发了一个评估大规模地图匹配的基准框架。我们的评估结果显示,与以前的工作相比,性能提高了27.25倍,同时实现了比当前解决方案更好的处理精度。我们还通过两个城市管理应用程序展示了GeoMatch的实际潜力。GeoMatch和我们的基准框架都是开源的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Developments in Privacy-Preserving Mining of Clinical Data. PoBery: Possibly-complete Big Data Queries with Probabilistic Data Placement and Scanning A Survey on the Role of Centrality as Seed Nodes for Information Propagation in Large Scale Network DataStorm: Coupled, Continuous Simulations for Complex Urban Environments TabReformer: Unsupervised Representation Learning for Erroneous Data Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1