Diagnosis Method of Lubrication Failure by Coolant Immersion for a CNC Lathe Spindle

Keigo Takasugi, Naohiko Suzuki, Y. Kaneko, N. Asakawa
{"title":"Diagnosis Method of Lubrication Failure by Coolant Immersion for a CNC Lathe Spindle","authors":"Keigo Takasugi, Naohiko Suzuki, Y. Kaneko, N. Asakawa","doi":"10.20965/ijat.2023.p0103","DOIUrl":null,"url":null,"abstract":"As a result of the development of network technologies, diagnosis techniques that can collect machine states continuously and prognostic health management (PHM) are available in the factory. PHM technology is also beginning to be implemented in the machine tool field. However, few studies have described causality between feature values, including vibration and acoustic emission data, collected by machine and physical phenomena of failures under the actual use of machine tools. In the present paper, a PHM system of lubrication failure of bearings in CNC lathe spindles is developed. An acceleration sensor is used to collect machine states, and statistical feature parameters that characterize the lubrication failure are extracted from the obtained vibration data. Moreover, in order to clarify the cause-effect relation between the extracted feature parameters and physical phenomena of lubrication failure, several analyses using surface roughness measurement, residual stress measurement, and grease consistency measurement are conducted.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"20 1","pages":"103-111"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Autom. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2023.p0103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a result of the development of network technologies, diagnosis techniques that can collect machine states continuously and prognostic health management (PHM) are available in the factory. PHM technology is also beginning to be implemented in the machine tool field. However, few studies have described causality between feature values, including vibration and acoustic emission data, collected by machine and physical phenomena of failures under the actual use of machine tools. In the present paper, a PHM system of lubrication failure of bearings in CNC lathe spindles is developed. An acceleration sensor is used to collect machine states, and statistical feature parameters that characterize the lubrication failure are extracted from the obtained vibration data. Moreover, in order to clarify the cause-effect relation between the extracted feature parameters and physical phenomena of lubrication failure, several analyses using surface roughness measurement, residual stress measurement, and grease consistency measurement are conducted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数控车床主轴浸液润滑故障诊断方法
随着网络技术的发展,能够持续收集机器状态的诊断技术和预测健康管理(PHM)在工厂中得到了应用。PHM技术也开始在机床领域得到应用。然而,很少有研究描述机器采集的特征值(包括振动和声发射数据)与机床实际使用下的故障物理现象之间的因果关系。本文开发了数控车床主轴轴承润滑故障的PHM系统。利用加速度传感器采集机床状态,并从采集到的振动数据中提取表征润滑故障的统计特征参数。此外,为了明确提取的特征参数与润滑失效物理现象之间的因果关系,采用表面粗糙度测量、残余应力测量和油脂稠度测量进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advantages of Injection Mold with Hybrid Process of Metal Powder Bed Fusion and Subtractive Process Experimental Investigation of Spatter Particle Behavior and Improvement in Build Quality in PBF-LB Process Planning with Removal of Melting Penetration and Temper Colors in 5-Axis Hybrid Additive and Subtractive Manufacturing Technique for Introducing Internal Defects with Arbitrary Sizes and Locations in Metals via Additive Manufacturing and Evaluation of Fatigue Properties Editorial: Recent Trends in Additive Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1