Mining Points-of-Interest for Explaining Urban Phenomena: A Scalable Variational Inference Approach

Christof Naumzik, Patrick Zoechbauer, S. Feuerriegel
{"title":"Mining Points-of-Interest for Explaining Urban Phenomena: A Scalable Variational Inference Approach","authors":"Christof Naumzik, Patrick Zoechbauer, S. Feuerriegel","doi":"10.1145/3366423.3380298","DOIUrl":null,"url":null,"abstract":"Points-of-interest (POIs; i.e., restaurants, bars, landmarks, and other entities) are common in web-mined data: they greatly explain the spatial distributions of urban phenomena. The conventional modeling approach relies upon feature engineering, yet it ignores the spatial structure among POIs. In order to overcome this shortcoming, the present paper proposes a novel spatial model for explaining spatial distributions based on web-mined POIs. Our key contributions are: (1) We present a rigorous yet highly interpretable formalization in order to model the influence of POIs on a given outcome variable. Specifically, we accommodate the spatial distributions of both the outcome and POIs. In our case, this modeled by the sum of latent Gaussian processes. (2) In contrast to previous literature, our model infers the influence of POIs without feature engineering, instead we model the influence of POIs via distance-weighted kernel functions with fully learnable parameterizations. (3) We propose a scalable learning algorithm based on sparse variational approximation. For this purpose, we derive a tailored evidence lower bound (ELBO) and, for appropriate likelihoods, we even show that an analytical expression can be obtained. This allows fast and accurate computation of the ELBO. Finally, the value of our approach for web mining is demonstrated in two real-world case studies. Our findings provide substantial improvements over state-of-the-art baselines with regard to both predictive and, in particular, explanatory performance. Altogether, this yields a novel spatial model for leveraging web-mined POIs. Within the context of location-based social networks, it promises an extensive range of new insights and use cases.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"505 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Points-of-interest (POIs; i.e., restaurants, bars, landmarks, and other entities) are common in web-mined data: they greatly explain the spatial distributions of urban phenomena. The conventional modeling approach relies upon feature engineering, yet it ignores the spatial structure among POIs. In order to overcome this shortcoming, the present paper proposes a novel spatial model for explaining spatial distributions based on web-mined POIs. Our key contributions are: (1) We present a rigorous yet highly interpretable formalization in order to model the influence of POIs on a given outcome variable. Specifically, we accommodate the spatial distributions of both the outcome and POIs. In our case, this modeled by the sum of latent Gaussian processes. (2) In contrast to previous literature, our model infers the influence of POIs without feature engineering, instead we model the influence of POIs via distance-weighted kernel functions with fully learnable parameterizations. (3) We propose a scalable learning algorithm based on sparse variational approximation. For this purpose, we derive a tailored evidence lower bound (ELBO) and, for appropriate likelihoods, we even show that an analytical expression can be obtained. This allows fast and accurate computation of the ELBO. Finally, the value of our approach for web mining is demonstrated in two real-world case studies. Our findings provide substantial improvements over state-of-the-art baselines with regard to both predictive and, in particular, explanatory performance. Altogether, this yields a novel spatial model for leveraging web-mined POIs. Within the context of location-based social networks, it promises an extensive range of new insights and use cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挖掘兴趣点来解释城市现象:一种可扩展的变分推理方法
的兴趣点(POIs;例如,餐馆、酒吧、地标和其他实体)在网络挖掘数据中很常见:它们极大地解释了城市现象的空间分布。传统的建模方法依赖于特征工程,但忽略了poi之间的空间结构。为了克服这一缺点,本文提出了一种新的空间模型来解释基于web挖掘的poi的空间分布。我们的主要贡献是:(1)为了模拟poi对给定结果变量的影响,我们提出了一个严格但高度可解释的形式化方法。具体来说,我们适应了结果和poi的空间分布。在我们的例子中,这是由潜在高斯过程的和来建模的。(2)与之前的文献相比,我们的模型没有使用特征工程来推断poi的影响,而是通过具有完全可学习参数化的距离加权核函数来建模poi的影响。(3)提出了一种基于稀疏变分逼近的可扩展学习算法。为此,我们推导了一个定制的证据下限(ELBO),并且,对于适当的可能性,我们甚至表明可以获得解析表达式。这允许快速和准确地计算ELBO。最后,我们的web挖掘方法的价值在两个现实世界的案例研究中得到了证明。我们的研究结果在预测和特别是解释性能方面都比最先进的基线有了实质性的改进。总之,这为利用网络挖掘的poi提供了一个新的空间模型。在基于位置的社交网络的背景下,它承诺提供广泛的新见解和用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gone, Gone, but Not Really, and Gone, But Not forgotten: A Typology of Website Recoverability Those who are left behind: A chronicle of internet access in Cuba Towards Automated Technologies in the Referencing Quality of Wikidata Companion of The Web Conference 2022, Virtual Event / Lyon, France, April 25 - 29, 2022 WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1