E. Papamichos, L. E. Walle, A. Berntsen, D. Szewczyk
{"title":"Sand Mass Production in Anisotropic Stresses From Lab to Field Predictions","authors":"E. Papamichos, L. E. Walle, A. Berntsen, D. Szewczyk","doi":"10.2118/205929-ms","DOIUrl":null,"url":null,"abstract":"\n Sand onset and sand rate predictions are important in hydrocarbon production to optimize production, increase recovery, and reduce costs and the environmental footprint. Recent laboratory results on Castlegate sandstone from sand production tests in a True Triaxial test system have revealed that stress anisotropy plays an important role not only on sand onset but also in sand rate. The results confirmed our hypothesis that stress anisotropy means earlier sand produced but less sand. The laboratory results also revealed the effect of fluid saturation, i.e., oil, brine or irreducible water saturation on sand onset and sand rate. They allow the calibration of SandPredictor, a field sand prediction model, for stress anisotropy and production before and after water breakthrough. A field case analysis demonstrated the effects and showed the importance of in situ stress anisotropy and watercut on sand mass and rate.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 23, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205929-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Sand onset and sand rate predictions are important in hydrocarbon production to optimize production, increase recovery, and reduce costs and the environmental footprint. Recent laboratory results on Castlegate sandstone from sand production tests in a True Triaxial test system have revealed that stress anisotropy plays an important role not only on sand onset but also in sand rate. The results confirmed our hypothesis that stress anisotropy means earlier sand produced but less sand. The laboratory results also revealed the effect of fluid saturation, i.e., oil, brine or irreducible water saturation on sand onset and sand rate. They allow the calibration of SandPredictor, a field sand prediction model, for stress anisotropy and production before and after water breakthrough. A field case analysis demonstrated the effects and showed the importance of in situ stress anisotropy and watercut on sand mass and rate.