{"title":"Entropy-based histograms for selectivity estimation","authors":"Hien To, Kuorong Chiang, C. Shahabi","doi":"10.1145/2505515.2505756","DOIUrl":null,"url":null,"abstract":"Histograms have been extensively used for selectivity estimation by academics and have successfully been adopted by database industry. However, the estimation error is usually large for skewed distributions and biased attributes, which are typical in real-world data. Therefore, we propose effective models to quantitatively measure bias and selectivity based on information entropy. These models together with the principles of maximum entropy are then used to develop a class of entropy-based histograms. Moreover, since entropy can be computed incrementally, we present the incremental variations of our algorithms that reduce the complexities of the histogram construction from quadratic to linear. We conducted an extensive set of experiments with both synthetic and real-world datasets to compare the accuracy and efficiency of our proposed techniques with many other histogram-based techniques, showing the superiority of the entropy-based approaches for both equality and range queries.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"584 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Histograms have been extensively used for selectivity estimation by academics and have successfully been adopted by database industry. However, the estimation error is usually large for skewed distributions and biased attributes, which are typical in real-world data. Therefore, we propose effective models to quantitatively measure bias and selectivity based on information entropy. These models together with the principles of maximum entropy are then used to develop a class of entropy-based histograms. Moreover, since entropy can be computed incrementally, we present the incremental variations of our algorithms that reduce the complexities of the histogram construction from quadratic to linear. We conducted an extensive set of experiments with both synthetic and real-world datasets to compare the accuracy and efficiency of our proposed techniques with many other histogram-based techniques, showing the superiority of the entropy-based approaches for both equality and range queries.