G. Carlse, K. Borsos, H. Beica, T. Vacheresse, A. Pouliot, J. Pérez-García, A. Vorozcovs, B. Barron, S. Jackson, L. Marmet, A. Kumarakrishnan
{"title":"Technique for Rapid Mass Determination of Airborne Microparticles Based on Release and Recapture from an Optical Dipole Force Trap","authors":"G. Carlse, K. Borsos, H. Beica, T. Vacheresse, A. Pouliot, J. Pérez-García, A. Vorozcovs, B. Barron, S. Jackson, L. Marmet, A. Kumarakrishnan","doi":"10.1103/physrevapplied.14.024017","DOIUrl":null,"url":null,"abstract":"We describe a new method for the rapid determination of the mass of particles confined in a free-space optical dipole-force trap. The technique relies on direct imaging of drop-and-restore experiments without the need for a vacuum environment. In these experiments, the trapping light is rapidly shuttered with an acousto-optic modulator causing the particle to be released from and subsequently recaptured by the trapping force. The trajectories of both the falls and restorations, imaged using a high-speed CMOS sensor, are combined to determine the particle mass. We corroborate these measurements using an analysis of position autocorrelation functions of the trapped particles. We report a statistical uncertainty of less than 2% for masses on the order of $5\\times10^{-14}$ kg using a data acquisition time of approximately 90 seconds.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevapplied.14.024017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We describe a new method for the rapid determination of the mass of particles confined in a free-space optical dipole-force trap. The technique relies on direct imaging of drop-and-restore experiments without the need for a vacuum environment. In these experiments, the trapping light is rapidly shuttered with an acousto-optic modulator causing the particle to be released from and subsequently recaptured by the trapping force. The trajectories of both the falls and restorations, imaged using a high-speed CMOS sensor, are combined to determine the particle mass. We corroborate these measurements using an analysis of position autocorrelation functions of the trapped particles. We report a statistical uncertainty of less than 2% for masses on the order of $5\times10^{-14}$ kg using a data acquisition time of approximately 90 seconds.