A non-sigmoidal activation function for feedforward artificial neural networks

Pravin Chandra, Udayan Ghose, A. Sood
{"title":"A non-sigmoidal activation function for feedforward artificial neural networks","authors":"Pravin Chandra, Udayan Ghose, A. Sood","doi":"10.1109/IJCNN.2015.7280440","DOIUrl":null,"url":null,"abstract":"For a single hidden layer feedforward artificial neural network to possess the universal approximation property, it is sufficient that the hidden layer nodes activation functions are continuous non-polynomial function. It is not required that the activation function be a sigmoidal function. In this paper a simple continuous, bounded, non-constant, differentiable, non-sigmoid and non-polynomial function is proposed, for usage as the activation function at hidden layer nodes. The proposed activation function does require the computation of an exponential function, and thus is computationally less intensive as compared to either the log-sigmoid or the hyperbolic tangent function. On a set of 10 function approximation tasks we demonstrate the efficiency and efficacy of the usage of the proposed activation functions. The results obtained allow us to assert that, at least on the 10 function approximation tasks, the results demonstrate that in equal epochs of training, the networks using the proposed activation function reach deeper minima of the error functional and also generalize better in most of the cases, and statistically are as good as if not better than networks using the logistic function as the activation function at the hidden nodes.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"5 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

For a single hidden layer feedforward artificial neural network to possess the universal approximation property, it is sufficient that the hidden layer nodes activation functions are continuous non-polynomial function. It is not required that the activation function be a sigmoidal function. In this paper a simple continuous, bounded, non-constant, differentiable, non-sigmoid and non-polynomial function is proposed, for usage as the activation function at hidden layer nodes. The proposed activation function does require the computation of an exponential function, and thus is computationally less intensive as compared to either the log-sigmoid or the hyperbolic tangent function. On a set of 10 function approximation tasks we demonstrate the efficiency and efficacy of the usage of the proposed activation functions. The results obtained allow us to assert that, at least on the 10 function approximation tasks, the results demonstrate that in equal epochs of training, the networks using the proposed activation function reach deeper minima of the error functional and also generalize better in most of the cases, and statistically are as good as if not better than networks using the logistic function as the activation function at the hidden nodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
前馈人工神经网络的非s型激活函数
单隐层前馈人工神经网络要具有普适逼近性,则隐层节点激活函数必须是连续的非多项式函数。激活函数不一定是s型函数。本文提出了一个简单的连续、有界、非常、可微、非s型、非多项式函数,作为隐层节点的激活函数。所提出的激活函数确实需要指数函数的计算,因此与log-s型或双曲正切函数相比,计算强度更低。在一组10个函数逼近任务中,我们证明了所提出的激活函数的使用效率和有效性。得到的结果使我们可以断言,至少在10个函数近似任务上,结果表明,在相同的训练周期中,使用所提出的激活函数的网络达到了误差函数的更深的最小值,并且在大多数情况下泛化得更好,并且在统计上与在隐藏节点上使用逻辑函数作为激活函数的网络一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1