{"title":"Assessing Tropical Pacific-induced Predictability of Southern California Precipitation Using a Novel Multi-input Multi-output Autoencoder","authors":"L. Passarella, S. Mahajan","doi":"10.1175/aies-d-23-0003.1","DOIUrl":null,"url":null,"abstract":"\nWe construct a novel Multi-Input Multi-Output Autoencoder-decoder (MIMO-AE) to capture the non-linear relationship of Southern California precipitation and tropical Pacific Ocean sea surface temperature. The MIMO-AE is trained on both monthly TP-SST and SC-PRECIP anomalies simultaneously. The co-variability of the two fields in the MIMO-AE shared nonlinear latent space can be condensed into an index, termed the MIMO-AE index. We use a transfer learning approach to train a MIMO-AE on the combined dataset of 100 years of output from a historical simulation with the Energy Exascale Earth Systems Model version 1 and a segment of observational data. We further use Long Short-Term Memory networks to assess sub-seasonal predictability of SC-PRECIP using the MIMO-AE index. We find that the MIMO-AE index provides enhanced predictability of SC-PRECIP for a lead-time of up-to four months as compared to Niño 3.4 index and the El Niño Southern Oscillation Longitudinal Index.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-23-0003.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We construct a novel Multi-Input Multi-Output Autoencoder-decoder (MIMO-AE) to capture the non-linear relationship of Southern California precipitation and tropical Pacific Ocean sea surface temperature. The MIMO-AE is trained on both monthly TP-SST and SC-PRECIP anomalies simultaneously. The co-variability of the two fields in the MIMO-AE shared nonlinear latent space can be condensed into an index, termed the MIMO-AE index. We use a transfer learning approach to train a MIMO-AE on the combined dataset of 100 years of output from a historical simulation with the Energy Exascale Earth Systems Model version 1 and a segment of observational data. We further use Long Short-Term Memory networks to assess sub-seasonal predictability of SC-PRECIP using the MIMO-AE index. We find that the MIMO-AE index provides enhanced predictability of SC-PRECIP for a lead-time of up-to four months as compared to Niño 3.4 index and the El Niño Southern Oscillation Longitudinal Index.