{"title":"A Graph Sequence Generator and Multi-head Self-attention Mechanism based Knowledge Graph Reasoning Architecture","authors":"Yuejia Wu, Jian-tao Zhou","doi":"10.1109/CSCWD57460.2023.10152706","DOIUrl":null,"url":null,"abstract":"Knowledge Graph (KG) is an essential research direction that involves storing and managing knowledge data, but its incompleteness and sparsity hinder its development in various applications. Knowledge Graph Reasoning (KGR) is an effective method to solve this limitation via reasoning missing knowledge based on existing knowledge. The graph Convolution Network (GCN) based method is one of the state-of-the-art approaches to this work. However, there are still some problems, such as the insufficient ability to perceive graph structure and the poor effect of learning data features which may limit the reasoning accuracy. This paper proposes a KGR architecture based on a graph sequence generator and multi-head self-attention mechanism, named GaM-KGR, to improve the above problems and enhance prediction accuracy. Specifically, the GaM-KGR first introduces the graph generation model into the field of KGR for graph representation learning to obtain the hidden features in the data so that enhancing the reasoning effect and then embeds the generated graph sequence into the multi-head self-attention mechanism for subsequent processing to improve the graph structure perception ability of the proposed architecture, so that it can process the graph structure data more appropriately. Extensive experimental results show that the GaM-KGR architecture can achieve the state-of-the-art prediction results of current GCN-based models.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"11 1","pages":"1520-1525"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152706","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge Graph (KG) is an essential research direction that involves storing and managing knowledge data, but its incompleteness and sparsity hinder its development in various applications. Knowledge Graph Reasoning (KGR) is an effective method to solve this limitation via reasoning missing knowledge based on existing knowledge. The graph Convolution Network (GCN) based method is one of the state-of-the-art approaches to this work. However, there are still some problems, such as the insufficient ability to perceive graph structure and the poor effect of learning data features which may limit the reasoning accuracy. This paper proposes a KGR architecture based on a graph sequence generator and multi-head self-attention mechanism, named GaM-KGR, to improve the above problems and enhance prediction accuracy. Specifically, the GaM-KGR first introduces the graph generation model into the field of KGR for graph representation learning to obtain the hidden features in the data so that enhancing the reasoning effect and then embeds the generated graph sequence into the multi-head self-attention mechanism for subsequent processing to improve the graph structure perception ability of the proposed architecture, so that it can process the graph structure data more appropriately. Extensive experimental results show that the GaM-KGR architecture can achieve the state-of-the-art prediction results of current GCN-based models.
期刊介绍:
Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW.
The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas.
The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.