A Graph Sequence Generator and Multi-head Self-attention Mechanism based Knowledge Graph Reasoning Architecture

IF 2 3区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Supported Cooperative Work-The Journal of Collaborative Computing Pub Date : 2023-05-24 DOI:10.1109/CSCWD57460.2023.10152706
Yuejia Wu, Jian-tao Zhou
{"title":"A Graph Sequence Generator and Multi-head Self-attention Mechanism based Knowledge Graph Reasoning Architecture","authors":"Yuejia Wu, Jian-tao Zhou","doi":"10.1109/CSCWD57460.2023.10152706","DOIUrl":null,"url":null,"abstract":"Knowledge Graph (KG) is an essential research direction that involves storing and managing knowledge data, but its incompleteness and sparsity hinder its development in various applications. Knowledge Graph Reasoning (KGR) is an effective method to solve this limitation via reasoning missing knowledge based on existing knowledge. The graph Convolution Network (GCN) based method is one of the state-of-the-art approaches to this work. However, there are still some problems, such as the insufficient ability to perceive graph structure and the poor effect of learning data features which may limit the reasoning accuracy. This paper proposes a KGR architecture based on a graph sequence generator and multi-head self-attention mechanism, named GaM-KGR, to improve the above problems and enhance prediction accuracy. Specifically, the GaM-KGR first introduces the graph generation model into the field of KGR for graph representation learning to obtain the hidden features in the data so that enhancing the reasoning effect and then embeds the generated graph sequence into the multi-head self-attention mechanism for subsequent processing to improve the graph structure perception ability of the proposed architecture, so that it can process the graph structure data more appropriately. Extensive experimental results show that the GaM-KGR architecture can achieve the state-of-the-art prediction results of current GCN-based models.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"11 1","pages":"1520-1525"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152706","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge Graph (KG) is an essential research direction that involves storing and managing knowledge data, but its incompleteness and sparsity hinder its development in various applications. Knowledge Graph Reasoning (KGR) is an effective method to solve this limitation via reasoning missing knowledge based on existing knowledge. The graph Convolution Network (GCN) based method is one of the state-of-the-art approaches to this work. However, there are still some problems, such as the insufficient ability to perceive graph structure and the poor effect of learning data features which may limit the reasoning accuracy. This paper proposes a KGR architecture based on a graph sequence generator and multi-head self-attention mechanism, named GaM-KGR, to improve the above problems and enhance prediction accuracy. Specifically, the GaM-KGR first introduces the graph generation model into the field of KGR for graph representation learning to obtain the hidden features in the data so that enhancing the reasoning effect and then embeds the generated graph sequence into the multi-head self-attention mechanism for subsequent processing to improve the graph structure perception ability of the proposed architecture, so that it can process the graph structure data more appropriately. Extensive experimental results show that the GaM-KGR architecture can achieve the state-of-the-art prediction results of current GCN-based models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于图序列生成器和多头自关注机制的知识图推理体系结构
知识图谱(Knowledge Graph, KG)是涉及知识数据存储和管理的重要研究方向,但其不完备性和稀疏性阻碍了其在各种应用中的发展。知识图推理(Knowledge Graph Reasoning, KGR)是一种解决这一问题的有效方法,它在已有知识的基础上对缺失知识进行推理。基于图卷积网络(GCN)的方法是这项工作的最先进的方法之一。但是,仍然存在一些问题,例如对图结构的感知能力不足,学习数据特征的效果不佳,这可能会限制推理的准确性。本文提出了一种基于图序列生成器和多头自关注机制的KGR体系结构GaM-KGR,以改善上述问题,提高预测精度。具体而言,GaM-KGR首先将图生成模型引入到KGR领域进行图表示学习,获取数据中的隐藏特征,增强推理效果,然后将生成的图序列嵌入到头部自注意机制中进行后续处理,提高所提出架构的图结构感知能力,使其能够更恰当地处理图结构数据。大量的实验结果表明,GaM-KGR架构可以达到当前基于gcn模型的最先进的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Supported Cooperative Work-The Journal of Collaborative Computing
Computer Supported Cooperative Work-The Journal of Collaborative Computing COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.40
自引率
4.20%
发文量
31
审稿时长
>12 weeks
期刊介绍: Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW. The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas. The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.
期刊最新文献
Text-based Patient – Doctor Discourse Online And Patients’ Experiences of Empathy Agency, Power and Confrontation: the Role for Socially Engaged Art in CSCW with Rurban Communities in Support of Inclusion Data as Relation: Ontological Trouble in the Data-Driven Public Administration The Avatar Facial Expression Reenactment Method in the Metaverse based on Overall-Local Optical-Flow Estimation and Illumination Difference Investigating Author Research Relatedness through Crowdsourcing: A Replication Study on MTurk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1