Rachee Singh, Muqeet Mukhtar, Ashay Krishna, Aniruddha Parkhi, J. Padhye, D. Maltz
{"title":"Surviving switch failures in cloud datacenters","authors":"Rachee Singh, Muqeet Mukhtar, Ashay Krishna, Aniruddha Parkhi, J. Padhye, D. Maltz","doi":"10.1145/3464994.3464996","DOIUrl":null,"url":null,"abstract":"Switch failures can hamper access to client services, cause link congestion and blackhole network traffic. In this study, we examine the nature of switch failures in the datacenters of a large commercial cloud provider through the lens of survival theory. We study a cohort of over 180,000 switches with a variety of hardware and software configurations and find that datacenter switches have a 98% likelihood of functioning uninterrupted for over 3 months since deployment in production. However, there is significant heterogeneity in switch survival rates with respect to their hardware and software: the switches of one vendor are twice as likely to fail compared to the others. We attribute the majority of switch failures to hardware impairments and unplanned power losses. We find that the in-house switch operating system, SONiC, boosts the survival likelihood of switches in datacenters by 1% by eliminating switch failures caused by software bugs in vendor switch OSes.","PeriodicalId":50646,"journal":{"name":"ACM Sigcomm Computer Communication Review","volume":"12 1","pages":"2 - 9"},"PeriodicalIF":2.2000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigcomm Computer Communication Review","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3464994.3464996","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 13
Abstract
Switch failures can hamper access to client services, cause link congestion and blackhole network traffic. In this study, we examine the nature of switch failures in the datacenters of a large commercial cloud provider through the lens of survival theory. We study a cohort of over 180,000 switches with a variety of hardware and software configurations and find that datacenter switches have a 98% likelihood of functioning uninterrupted for over 3 months since deployment in production. However, there is significant heterogeneity in switch survival rates with respect to their hardware and software: the switches of one vendor are twice as likely to fail compared to the others. We attribute the majority of switch failures to hardware impairments and unplanned power losses. We find that the in-house switch operating system, SONiC, boosts the survival likelihood of switches in datacenters by 1% by eliminating switch failures caused by software bugs in vendor switch OSes.
期刊介绍:
Computer Communication Review (CCR) is an online publication of the ACM Special Interest Group on Data Communication (SIGCOMM) and publishes articles on topics within the SIG''s field of interest. Technical papers accepted to CCR typically report on practical advances or the practical applications of theoretical advances. CCR serves as a forum for interesting and novel ideas at an early stage in their development. The focus is on timely dissemination of new ideas that may help trigger additional investigations. While the innovation and timeliness are the major criteria for its acceptance, technical robustness and readability will also be considered in the review process. We particularly encourage papers with early evaluation or feasibility studies.