Hankel subspace method for efficient gesture representation

B. Gatto, Anna Bogdanova, L. S. Souza, E. M. Santos
{"title":"Hankel subspace method for efficient gesture representation","authors":"B. Gatto, Anna Bogdanova, L. S. Souza, E. M. Santos","doi":"10.1109/MLSP.2017.8168114","DOIUrl":null,"url":null,"abstract":"Gesture recognition technology provides multiple opportunities for direct human-computer interaction, without the use of additional external devices. As such, it had been an appealing research area in the field of computer vision. Many of its challenges are related to the complexity of human gestures, which may produce nonlinear distributions under different viewpoints. In this paper, we introduce a novel framework for gesture recognition, which achieves high discrimination of spatial and temporal information while significantly decreasing the computational cost. The proposed method consists of four stages. First, we generate an ordered subset of images from a gesture video, filtering out those that do not contribute to the recognition task. Second, we express spatial and temporal gesture information in a compact trajectory matrix. Then, we represent the obtained matrix as a subspace, achieving discriminative information, as the trajectory matrices derived from different gestures generate dissimilar clusters in a low dimension space. Finally, we apply soft weights to find the optimal dimension of each gesture subspace. We demonstrate practical and theoretical gains of our compact representation through experimental evaluation using two publicity available gesture datasets.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"37 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Gesture recognition technology provides multiple opportunities for direct human-computer interaction, without the use of additional external devices. As such, it had been an appealing research area in the field of computer vision. Many of its challenges are related to the complexity of human gestures, which may produce nonlinear distributions under different viewpoints. In this paper, we introduce a novel framework for gesture recognition, which achieves high discrimination of spatial and temporal information while significantly decreasing the computational cost. The proposed method consists of four stages. First, we generate an ordered subset of images from a gesture video, filtering out those that do not contribute to the recognition task. Second, we express spatial and temporal gesture information in a compact trajectory matrix. Then, we represent the obtained matrix as a subspace, achieving discriminative information, as the trajectory matrices derived from different gestures generate dissimilar clusters in a low dimension space. Finally, we apply soft weights to find the optimal dimension of each gesture subspace. We demonstrate practical and theoretical gains of our compact representation through experimental evaluation using two publicity available gesture datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效手势表示的Hankel子空间方法
手势识别技术为直接人机交互提供了多种机会,而无需使用额外的外部设备。因此,它一直是计算机视觉领域一个很有吸引力的研究领域。它的许多挑战与人类手势的复杂性有关,这可能会在不同的视角下产生非线性分布。在本文中,我们引入了一种新的手势识别框架,在显著降低计算成本的同时,实现了对空间和时间信息的高度识别。该方法分为四个阶段。首先,我们从手势视频中生成一个有序的图像子集,过滤掉那些对识别任务没有贡献的图像。其次,我们用一个紧凑的轨迹矩阵来表达空间和时间的手势信息。然后,我们将得到的矩阵表示为一个子空间,获得判别信息,因为来自不同手势的轨迹矩阵在低维空间中产生不同的聚类。最后,我们应用软权重来找到每个手势子空间的最优维度。我们通过使用两个公开可用的手势数据集进行实验评估,证明了我们的紧凑表示的实践和理论收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classical quadrature rules via Gaussian processes Does speech enhancement work with end-to-end ASR objectives?: Experimental analysis of multichannel end-to-end ASR Differential mutual information forward search for multi-kernel discriminant-component selection with an application to privacy-preserving classification Partitioning in signal processing using the object migration automaton and the pursuit paradigm Inferring room semantics using acoustic monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1