Review of Shearography for Dual-Directional Measurement

3区 物理与天体物理 Q1 Materials Science Progress in Optics Pub Date : 2022-04-08 DOI:10.3390/opt3020014
Bicheng Guo, Boyang Zhang, Xiaowan Zheng, Siyuan Fang, Yue Fang, Bernard Sia, Lianxiang Yang
{"title":"Review of Shearography for Dual-Directional Measurement","authors":"Bicheng Guo, Boyang Zhang, Xiaowan Zheng, Siyuan Fang, Yue Fang, Bernard Sia, Lianxiang Yang","doi":"10.3390/opt3020014","DOIUrl":null,"url":null,"abstract":"Shearography is a coherent optical technique that allows the identification of the first derivative of deformation in the shearing direction. Due to direct measuring strain information, shearography is suited for non-destructive testing and evaluation (NDT/NDE). However, if there is a small defect parallel to the shearing direction, the first derivative of deformation in the direction has no noticeable change, and the defect is not visible. Therefore, the development of a shearography system with dual-directional simultaneous measurement of the first derivatives of deformation both in x- and y-directions is highly demanded in the field of NDT/NDE. It is suited to inspect complicated defects, such as long and narrow slots, microcracks, etc. This paper presents a review of shearography for different dual-directional systems developed in the last two decades. After a brief overview of shearography, the paper will display two dual-directional shearographic techniques—temporal phase-shift (TPS) and spatial phase-shift (SPS) methods. TPS dual-shearing systems are suited for static measurements, while the SPS dual-shearing systems are useful for dynamic measurements. The basic theories, optical layouts, and comparisons are presented. The advantages and disadvantages of practical applications are discussed.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/opt3020014","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

Abstract

Shearography is a coherent optical technique that allows the identification of the first derivative of deformation in the shearing direction. Due to direct measuring strain information, shearography is suited for non-destructive testing and evaluation (NDT/NDE). However, if there is a small defect parallel to the shearing direction, the first derivative of deformation in the direction has no noticeable change, and the defect is not visible. Therefore, the development of a shearography system with dual-directional simultaneous measurement of the first derivatives of deformation both in x- and y-directions is highly demanded in the field of NDT/NDE. It is suited to inspect complicated defects, such as long and narrow slots, microcracks, etc. This paper presents a review of shearography for different dual-directional systems developed in the last two decades. After a brief overview of shearography, the paper will display two dual-directional shearographic techniques—temporal phase-shift (TPS) and spatial phase-shift (SPS) methods. TPS dual-shearing systems are suited for static measurements, while the SPS dual-shearing systems are useful for dynamic measurements. The basic theories, optical layouts, and comparisons are presented. The advantages and disadvantages of practical applications are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双向测量的剪切成像技术综述
剪切成像是一种相干光学技术,它允许在剪切方向上识别变形的一阶导数。由于剪切成像可以直接测量应变信息,因此适用于无损检测和评估(NDT/NDE)。但是,如果平行于剪切方向存在较小的缺陷,则该方向上的变形一阶导数没有明显变化,缺陷不可见。因此,在无损检测/无损检测领域,开发一种同时测量x方向和y方向变形一阶导数的剪切成像系统是非常必要的。适用于检测复杂缺陷,如狭长的狭缝、微裂纹等。本文综述了近二十年来发展起来的不同双向系统的剪切学。在简要介绍剪切成像技术之后,本文将介绍两种双向剪切成像技术——时间相移(TPS)和空间相移(SPS)方法。TPS双剪切系统适用于静态测量,而SPS双剪切系统适用于动态测量。介绍了基本原理、光学布局和比较。讨论了实际应用的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Optics
Progress in Optics 物理-光学
CiteScore
4.50
自引率
0.00%
发文量
8
期刊最新文献
Blue-Noise-Based Disordered Photonic Structures Show Isotropic and Ultrawide Band Gaps Morphological and Optical Modification of Melanosomes in Fish Integuments upon Oxidation Operation of an Electrical-Only-Contact Photonic Integrated Chip for Quantum Random Number Generation Using Laser Gain-Switching Investigating Laser-Induced Periodic Surface Structures (LIPSS) Formation in Silicon and Their Impact on Surface-Enhanced Raman Spectroscopy (SERS) Image Haziness Contrast Metric Describing Optical Scattering Depth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1