Resilient Ground Vehicle Autonomous Navigation in GPS-denied Environments

Kleio Baxevani, Indrajeet Yadav, Yulin Yang, M. Sebok, H. Tanner, G. Huang
{"title":"Resilient Ground Vehicle Autonomous Navigation in GPS-denied Environments","authors":"Kleio Baxevani, Indrajeet Yadav, Yulin Yang, M. Sebok, H. Tanner, G. Huang","doi":"10.1142/s2737480722500200","DOIUrl":null,"url":null,"abstract":"Co-design and integration of vehicle navigation and control and state estimation is key for enabling field deployment of mobile robots in GPS-denied cluttered environments, and sensor calibration is critical for successful operation of both subsystems. This paper demonstrates the potential of this co-design approach with field tests of the integration of a reactive receding horizon-based motion planner and controller with an inertial aided multi-sensor calibration scheme. The reported method provides accurate calibration parameters that improve the performance of the state estimator, and enable the motion controller to generate smooth and continuous minimal-jerk trajectories based on local LiDAR data. Numerical simulations in Unity, and real-world experimental results from the field corroborate the claims of efficacy for the reported autonomous navigation computational pipeline.","PeriodicalId":6623,"journal":{"name":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2737480722500200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Co-design and integration of vehicle navigation and control and state estimation is key for enabling field deployment of mobile robots in GPS-denied cluttered environments, and sensor calibration is critical for successful operation of both subsystems. This paper demonstrates the potential of this co-design approach with field tests of the integration of a reactive receding horizon-based motion planner and controller with an inertial aided multi-sensor calibration scheme. The reported method provides accurate calibration parameters that improve the performance of the state estimator, and enable the motion controller to generate smooth and continuous minimal-jerk trajectories based on local LiDAR data. Numerical simulations in Unity, and real-world experimental results from the field corroborate the claims of efficacy for the reported autonomous navigation computational pipeline.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
gps拒绝环境下弹性地面车辆自主导航
车辆导航、控制和状态估计的协同设计和集成是使移动机器人能够在没有gps的混乱环境中进行现场部署的关键,而传感器校准对于两个子系统的成功运行至关重要。本文通过将响应式后退水平运动规划器和控制器与惯性辅助多传感器校准方案集成的现场测试,证明了这种协同设计方法的潜力。该方法提供了精确的校准参数,提高了状态估计器的性能,并使运动控制器能够基于本地LiDAR数据生成平滑连续的最小抖动轨迹。Unity中的数值模拟和现场的实际实验结果证实了所报道的自主导航计算管道的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Sliding-Mode Disturbance Observer-Based Nonlinear Control for Unmanned Dual-Arm Aerial Manipulator Subject to State Constraints A Cloud Detection Method for Landsat 8 Satellite Remote Sensing Images Based on Improved CDNet Model Time-coordinated path following for multiple agile fixed-wing UAVs with end-roll expectations A Novel Model Calibration Method for Active Magnetic Bearing Based on Deep Reinforcement Learning Wind and Actuator Fault Estimation for a Quadrotor UAV Based on Two-Stage Particle Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1