Knowledge Distillation with Source-free Unsupervised Domain Adaptation for BERT Model Compression

IF 2 3区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Supported Cooperative Work-The Journal of Collaborative Computing Pub Date : 2023-05-24 DOI:10.1109/CSCWD57460.2023.10152760
Jing Tian, Juan Chen, Ningjiang Chen, Lin Bai, Suqun Huang
{"title":"Knowledge Distillation with Source-free Unsupervised Domain Adaptation for BERT Model Compression","authors":"Jing Tian, Juan Chen, Ningjiang Chen, Lin Bai, Suqun Huang","doi":"10.1109/CSCWD57460.2023.10152760","DOIUrl":null,"url":null,"abstract":"The pre-training language model BERT has brought significant performance improvements to a series of natural language processing tasks, but due to the large scale of the model, it is difficult to be applied in many practical application scenarios. With the continuous development of edge computing, deploying the models on resource-constrained edge devices has become a trend. Considering the distributed edge environment, how to take into account issues such as data distribution differences, labeling costs, and privacy while the model is shrinking is a critical task. The paper proposes a new BERT distillation method with source-free unsupervised domain adaptation. By combining source-free unsupervised domain adaptation and knowledge distillation for optimization and improvement, the performance of the BERT model is improved in the case of cross-domain data. Compared with other methods, our method can improve the average prediction accuracy by up to around 4% through the experimental evaluation of the cross-domain sentiment analysis task.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"1 1","pages":"1766-1771"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152760","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The pre-training language model BERT has brought significant performance improvements to a series of natural language processing tasks, but due to the large scale of the model, it is difficult to be applied in many practical application scenarios. With the continuous development of edge computing, deploying the models on resource-constrained edge devices has become a trend. Considering the distributed edge environment, how to take into account issues such as data distribution differences, labeling costs, and privacy while the model is shrinking is a critical task. The paper proposes a new BERT distillation method with source-free unsupervised domain adaptation. By combining source-free unsupervised domain adaptation and knowledge distillation for optimization and improvement, the performance of the BERT model is improved in the case of cross-domain data. Compared with other methods, our method can improve the average prediction accuracy by up to around 4% through the experimental evaluation of the cross-domain sentiment analysis task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无源无监督域自适应的BERT模型压缩知识蒸馏
预训练语言模型BERT对一系列自然语言处理任务带来了显著的性能提升,但由于模型规模较大,在很多实际应用场景中难以应用。随着边缘计算的不断发展,在资源受限的边缘设备上部署模型已成为一种趋势。考虑到分布式边缘环境,如何在模型缩小的同时兼顾数据分布差异、标注成本和隐私等问题是一个关键任务。提出了一种新的无源无监督域自适应BERT蒸馏方法。通过结合无源无监督域自适应和知识蒸馏进行优化和改进,提高了BERT模型在跨域数据情况下的性能。通过对跨域情感分析任务的实验评估,与其他方法相比,我们的方法平均预测准确率提高了4%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Supported Cooperative Work-The Journal of Collaborative Computing
Computer Supported Cooperative Work-The Journal of Collaborative Computing COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
6.40
自引率
4.20%
发文量
31
审稿时长
>12 weeks
期刊介绍: Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW. The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas. The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.
期刊最新文献
Text-based Patient – Doctor Discourse Online And Patients’ Experiences of Empathy Agency, Power and Confrontation: the Role for Socially Engaged Art in CSCW with Rurban Communities in Support of Inclusion Data as Relation: Ontological Trouble in the Data-Driven Public Administration The Avatar Facial Expression Reenactment Method in the Metaverse based on Overall-Local Optical-Flow Estimation and Illumination Difference Investigating Author Research Relatedness through Crowdsourcing: A Replication Study on MTurk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1