Employing Machine Learning Approaches to Determine the Heat Capacity of Cellulosic Biomass Samples with Different Origins

M. Karimi, B. Vaferi
{"title":"Employing Machine Learning Approaches to Determine the Heat Capacity of Cellulosic Biomass Samples with Different Origins","authors":"M. Karimi, B. Vaferi","doi":"10.2139/ssrn.3935555","DOIUrl":null,"url":null,"abstract":"Heat capacity is among the most well-known thermal properties of cellulosic biomass samples. This study assembles a general machine learning model to estimate the heat capacity of the cellulosic biomass samples with different origins. Combining the uncertainty and ranking analyses over 819 artificial intelligence (AI) models from seven different categories confirmed that the least-squares support vector regression (LSSVR) with the Gaussian kernel function is the best estimator. This model is validated using 700 laboratory heat capacities of four cellulosic biomass samples in wide temperature ranges (AARD=0.32%, MSE=1.88×10-3, and R2=0.999991). The data validity investigation approved that only one out of 700 experimental data is an outlier. The LSSVR model considers the effect of crystallinity, temperature, and sulfur and ash content of the cellulosic samples on their heat capacity. The LSSVR improves the achieved accuracy using the empirical correlation by more than 62%.","PeriodicalId":10639,"journal":{"name":"Computational Materials Science eJournal","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3935555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heat capacity is among the most well-known thermal properties of cellulosic biomass samples. This study assembles a general machine learning model to estimate the heat capacity of the cellulosic biomass samples with different origins. Combining the uncertainty and ranking analyses over 819 artificial intelligence (AI) models from seven different categories confirmed that the least-squares support vector regression (LSSVR) with the Gaussian kernel function is the best estimator. This model is validated using 700 laboratory heat capacities of four cellulosic biomass samples in wide temperature ranges (AARD=0.32%, MSE=1.88×10-3, and R2=0.999991). The data validity investigation approved that only one out of 700 experimental data is an outlier. The LSSVR model considers the effect of crystallinity, temperature, and sulfur and ash content of the cellulosic samples on their heat capacity. The LSSVR improves the achieved accuracy using the empirical correlation by more than 62%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习方法确定不同来源的纤维素生物质样品的热容
热容是纤维素生物质样品中最著名的热性能之一。本研究组装了一个通用的机器学习模型来估计不同来源的纤维素生物质样品的热容量。通过对7个不同类别的819个人工智能模型的不确定性和排序分析,证实了高斯核函数最小二乘支持向量回归(LSSVR)是最佳估计器。该模型使用4种纤维素生物质样品的700个实验室热容在宽温度范围内进行验证(AARD=0.32%, MSE=1.88×10-3, R2=0.999991)。数据有效性调查证实,700个实验数据中只有一个是异常值。LSSVR模型考虑了纤维素样品的结晶度、温度、硫和灰分含量对其热容的影响。LSSVR利用经验相关性提高了62%以上的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metal-Graphene Hybrid Terahertz Metasurfaces Based on Bound States in the Continuum (Bic) and Quasi-Bic for Dynamic Near-Field Imaging Rapid Nucleation and Growth of Tetrafluoroethane Hydrate in the Cyclic Process of Boiling–Condensation A Unified Maximum Entropy Principle Approach for a Large Class of Routing Problems Fabrication of a Novel Surface Molecularly Imprinted Polymer Based on Zeolitic Imidazolate Framework-7 for Selective Extraction of Phthalates Measuring Oxygen Solubility in Ni Grains and Boundaries after Oxidation Using Atom Probe Tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1