A Novel Artificial Jellyfish Search Algorithm Improved with a Differential Evolution Algorithm-Based Global Search Strategy

Gulnur Yildizdan
{"title":"A Novel Artificial Jellyfish Search Algorithm Improved with a Differential Evolution Algorithm-Based Global Search Strategy","authors":"Gulnur Yildizdan","doi":"10.31202/ecjse.1131734","DOIUrl":null,"url":null,"abstract":"Metaheuristic algorithms are algorithms inspired by natural phenomena and that are used to decide which possible solution is more efficient to solve a problem. Although these algorithms, whose numbers are increasing day by day, do not guarantee the exact solution, they promise to reach a solution around the exact solution quickly. Artificial Jellyfish Search Algorithm (YDA) is also a new metaheuristic algorithm proposed in 2021. In this study, a modification has been made to the global search part of the standard algorithm in order to improve the global search capability of YDA. Accordingly, the \"current-to-best\" approach, which is one of the successful mutation strategies in the Differential Evolution Algorithm, has been integrated into the global search method of YDA. The advanced algorithm (MYDA) obtained as a result of this modification has been tested for 10,30,50,100,500 and 1000 dimensions on a total of twelve benchmark functions, seven of which are uni-modal and five are multi-modal. In addition, MYDA has also been compared with algorithms selected from the literature. The results have been interpreted with the help of statistical tests. When the results obtained are examined, it has been determined that the proposed algorithm outperforms the standard algorithm for all dimensions in all functions. In the comparison with the literature, it has been determined that the algorithm produces successful and competitive results.","PeriodicalId":11622,"journal":{"name":"El-Cezeri Fen ve Mühendislik Dergisi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"El-Cezeri Fen ve Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31202/ecjse.1131734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metaheuristic algorithms are algorithms inspired by natural phenomena and that are used to decide which possible solution is more efficient to solve a problem. Although these algorithms, whose numbers are increasing day by day, do not guarantee the exact solution, they promise to reach a solution around the exact solution quickly. Artificial Jellyfish Search Algorithm (YDA) is also a new metaheuristic algorithm proposed in 2021. In this study, a modification has been made to the global search part of the standard algorithm in order to improve the global search capability of YDA. Accordingly, the "current-to-best" approach, which is one of the successful mutation strategies in the Differential Evolution Algorithm, has been integrated into the global search method of YDA. The advanced algorithm (MYDA) obtained as a result of this modification has been tested for 10,30,50,100,500 and 1000 dimensions on a total of twelve benchmark functions, seven of which are uni-modal and five are multi-modal. In addition, MYDA has also been compared with algorithms selected from the literature. The results have been interpreted with the help of statistical tests. When the results obtained are examined, it has been determined that the proposed algorithm outperforms the standard algorithm for all dimensions in all functions. In the comparison with the literature, it has been determined that the algorithm produces successful and competitive results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于差分进化算法的人工水母搜索算法
元启发式算法是受自然现象启发的算法,用于决定哪种可能的解决方案更有效地解决问题。虽然这些算法的数量日益增加,但它们不能保证精确的解,但它们承诺很快得到一个接近精确解的解。人工水母搜索算法(Artificial Jellyfish Search Algorithm, YDA)也是2021年提出的一种新的元启发式算法。在本研究中,为了提高YDA的全局搜索能力,对标准算法的全局搜索部分进行了修改。因此,差分进化算法中成功的突变策略之一“当前至最佳”方法被整合到YDA的全局搜索方法中。改进后的先进算法(MYDA)在12个基准函数上分别进行了10、30、50、100、500和1000个维度的测试,其中7个是单模态,5个是多模态。此外,还将MYDA与文献中选择的算法进行了比较。这些结果已借助统计检验加以解释。通过对所得结果的检验,确定了本文算法在所有函数的所有维度上都优于标准算法。通过与文献的比较,可以确定该算法产生了成功且具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human Robot Interaction with Social Humanoid Robots A Single Source Thirteen Level Switched Capacitor Boost Inverter for PV applications Yakınsak-Konik Nozulların Giriş ve Çıkış Çaplarının İtme Kuvveti ve Hacimsel Debi Üzerindeki Etkisinin Teorik, Nümerik ve Deneysel İncelemesi Zeytinyağı Üretim Atıklarının Yün Boyamacılığında Kullanım Olanaklarının Araştırılması Yer Tepki Analizlerinde Farklı Dinamik Kayma Modülü Yaklaşımları Kullanılarak Belirlenen Tepki Spektrumlarının Karşılaştırılması
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1