Diagnosing and Predicting Problems with Rod Pumps using Machine Learning

P. Bangert
{"title":"Diagnosing and Predicting Problems with Rod Pumps using Machine Learning","authors":"P. Bangert","doi":"10.2118/194993-MS","DOIUrl":null,"url":null,"abstract":"\n Approximately 20% of all oilwells in the world use a beam pump to raise crude oil to the surface. The proper maintenance of these pumps is thus an important issue in oilfield operations. We wish to know, preferably before the failure, what is wrong with the pump. Maintenance issues on the downhole part of a beam pump can be reliably diagnosed from a plot of the displacement and load on the traveling valve; a diagram known as a dynamometer card. We demonstrate in this paper that this analysis can be fully automated using machine learning techniques that teach themselves to recognize various classes of damage in advance of the failure. We use a dataset of of 35292 sample cards drawn from 299 beam pumps in the Bahrain oilfield. We can detect 11 different damage classes from each other and from the normal class with an accuracy of 99.9%. This high accuracy makes it possible to automatically diagnose beam pumps in real-time and for the maintenance crew to focus on fixing pumps instead of monitoring them, which increases overall oil yield and decreases environmental impact.","PeriodicalId":11321,"journal":{"name":"Day 3 Wed, March 20, 2019","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, March 20, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194993-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Approximately 20% of all oilwells in the world use a beam pump to raise crude oil to the surface. The proper maintenance of these pumps is thus an important issue in oilfield operations. We wish to know, preferably before the failure, what is wrong with the pump. Maintenance issues on the downhole part of a beam pump can be reliably diagnosed from a plot of the displacement and load on the traveling valve; a diagram known as a dynamometer card. We demonstrate in this paper that this analysis can be fully automated using machine learning techniques that teach themselves to recognize various classes of damage in advance of the failure. We use a dataset of of 35292 sample cards drawn from 299 beam pumps in the Bahrain oilfield. We can detect 11 different damage classes from each other and from the normal class with an accuracy of 99.9%. This high accuracy makes it possible to automatically diagnose beam pumps in real-time and for the maintenance crew to focus on fixing pumps instead of monitoring them, which increases overall oil yield and decreases environmental impact.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习诊断和预测有杆泵的问题
世界上大约20%的油井使用梁式泵将原油提升到地面。因此,这些泵的适当维护是油田作业中的一个重要问题。我们希望知道,最好是在故障发生之前,泵出了什么问题。根据行程阀的位移和载荷图,可以可靠地诊断出梁泵井下部分的维护问题;称为测功卡的图表。我们在本文中证明,这种分析可以完全自动化,使用机器学习技术,在故障发生之前教会自己识别各种类型的损坏。我们使用了来自巴林油田299个束流泵的35292个样本卡的数据集。我们可以以99.9%的准确率检测出11种不同的伤害类别。这种高精度使得实时自动诊断光束泵成为可能,维护人员可以专注于固定泵而不是监控泵,从而提高了总产量并减少了对环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Laser Gun: The Next Perforation Technology High-Order Accurate Method for Solving the Anisotropic Eikonal Equation Recognizing Abnormal Shock Signatures During Drilling with Help of Machine Learning Optimizing Field Scale Polymer Development in Strong Aquifer Fields in the South of the Sultanate of Oman Experimental Study to Estimate CO2 Solubility in a High Pressure High Temperature HPHT Reservoir Carbonate Aquifer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1