{"title":"The I–V Characteristics of M–BaxSr1–xTiO3–M Thin Film Structures with Oxygen Vacancies. Part 1","authors":"V. Buniatyan, H. R. Dastoyan","doi":"10.17277/amt.2020.01.pp.008-017","DOIUrl":null,"url":null,"abstract":"The paper presents a detailed study of the I–V characteristics of m-ferroelectric-m {Pt/BaxSt1–xTiO3/Pt (Pt/BST/Pt)} thin film structure. The Schottky barrier thermal/field assisted and Pool–Frenkel (PF) emission along with the punch-through in the central region of the film are proposed for the interpretation of experimental I–V dependence. It is shown that both the Schottky barrier thermal/-field assisted emission and Pool–Frenkel emission from the oxygen vacancies conditioned traps may take place simultaneously. The effect of electric field on the electron (hole) emission from the trapping centers, in the symmetric Pt/BST/Pt thin film structure has been considered. The analysis of the PF effect indicates that the trapping centers are activated at very high electric fields, exceeding 10 V/cm. In Part 2 of the paper, based on the results and assumptions pointed in Part 1, analytical expressions were derived for Schottky barrier thermal/-field assisted and Pool–Frenkel emission currents. The computer modeling theoretical dependencies of the I–V characteristics has been compared with the experimental measured results and obtained good agreements.","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"130 1","pages":"008-017"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Journal of Advanced Materials and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17277/amt.2020.01.pp.008-017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The paper presents a detailed study of the I–V characteristics of m-ferroelectric-m {Pt/BaxSt1–xTiO3/Pt (Pt/BST/Pt)} thin film structure. The Schottky barrier thermal/field assisted and Pool–Frenkel (PF) emission along with the punch-through in the central region of the film are proposed for the interpretation of experimental I–V dependence. It is shown that both the Schottky barrier thermal/-field assisted emission and Pool–Frenkel emission from the oxygen vacancies conditioned traps may take place simultaneously. The effect of electric field on the electron (hole) emission from the trapping centers, in the symmetric Pt/BST/Pt thin film structure has been considered. The analysis of the PF effect indicates that the trapping centers are activated at very high electric fields, exceeding 10 V/cm. In Part 2 of the paper, based on the results and assumptions pointed in Part 1, analytical expressions were derived for Schottky barrier thermal/-field assisted and Pool–Frenkel emission currents. The computer modeling theoretical dependencies of the I–V characteristics has been compared with the experimental measured results and obtained good agreements.