Learning Linear Dynamical Systems from Multivariate Time Series: A Matrix Factorization Based Framework

Zitao Liu, M. Hauskrecht
{"title":"Learning Linear Dynamical Systems from Multivariate Time Series: A Matrix Factorization Based Framework","authors":"Zitao Liu, M. Hauskrecht","doi":"10.1137/1.9781611974348.91","DOIUrl":null,"url":null,"abstract":"The linear dynamical system (LDS) model is arguably the most commonly used time series model for real-world engineering and financial applications due to its relative simplicity, mathematically predictable behavior, and the fact that exact inference and predictions for the model can be done efficiently. In this work, we propose a new generalized LDS framework, gLDS, for learning LDS models from a collection of multivariate time series (MTS) data based on matrix factorization, which is different from traditional EM learning and spectral learning algorithms. In gLDS, each MTS sequence is factorized as a product of a shared emission matrix and a sequence-specific (hidden) state dynamics, where an individual hidden state sequence is represented with the help of a shared transition matrix. One advantage of our generalized formulation is that various types of constraints can be easily incorporated into the learning process. Furthermore, we propose a novel temporal smoothing regularization approach for learning the LDS model, which stabilizes the model, its learning algorithm and predictions it makes. Experiments on several real-world MTS data show that (1) regular LDS models learned from gLDS are able to achieve better time series predictive performance than other LDS learning algorithms; (2) constraints can be directly integrated into the learning process to achieve special properties such as stability, low-rankness; and (3) the proposed temporal smoothing regularization encourages more stable and accurate predictions.","PeriodicalId":74533,"journal":{"name":"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974348.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

The linear dynamical system (LDS) model is arguably the most commonly used time series model for real-world engineering and financial applications due to its relative simplicity, mathematically predictable behavior, and the fact that exact inference and predictions for the model can be done efficiently. In this work, we propose a new generalized LDS framework, gLDS, for learning LDS models from a collection of multivariate time series (MTS) data based on matrix factorization, which is different from traditional EM learning and spectral learning algorithms. In gLDS, each MTS sequence is factorized as a product of a shared emission matrix and a sequence-specific (hidden) state dynamics, where an individual hidden state sequence is represented with the help of a shared transition matrix. One advantage of our generalized formulation is that various types of constraints can be easily incorporated into the learning process. Furthermore, we propose a novel temporal smoothing regularization approach for learning the LDS model, which stabilizes the model, its learning algorithm and predictions it makes. Experiments on several real-world MTS data show that (1) regular LDS models learned from gLDS are able to achieve better time series predictive performance than other LDS learning algorithms; (2) constraints can be directly integrated into the learning process to achieve special properties such as stability, low-rankness; and (3) the proposed temporal smoothing regularization encourages more stable and accurate predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从多元时间序列学习线性动力系统:一个基于矩阵分解的框架
线性动力系统(LDS)模型可以说是现实世界工程和金融应用中最常用的时间序列模型,因为它相对简单,数学上可预测的行为,以及对模型的精确推断和预测可以有效地完成。在这项工作中,我们提出了一个新的广义LDS框架,gLDS,用于从多元时间序列(MTS)数据集合中学习LDS模型,这是基于矩阵分解的,这与传统的EM学习和谱学习算法不同。在gLDS中,每个MTS序列被分解为共享发射矩阵和序列特定(隐藏)状态动态的乘积,其中单个隐藏状态序列在共享转移矩阵的帮助下表示。我们的广义公式的一个优点是,各种类型的约束可以很容易地合并到学习过程中。此外,我们提出了一种新的时间平滑正则化方法来学习LDS模型,该方法稳定了模型、学习算法和预测。在多个真实MTS数据上的实验表明:(1)从gLDS中学习的正则LDS模型比其他LDS学习算法具有更好的时间序列预测性能;(2)约束可以直接融入到学习过程中,实现稳定、低秩等特殊性质;(3)提出的时间平滑正则化促进更稳定和准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FAME: Fragment-based Conditional Molecular Generation for Phenotypic Drug Discovery. Harmonic Alignment. GRIA: Graphical Regularization for Integrative Analysis. CP Tensor Decomposition with Cannot-Link Intermode Constraints. Region-Based Active Learning with Hierarchical and Adaptive Region Construction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1