Stock Volume Loss Estimation in Poplars using Regression Models and ALOS-2/PALSAR-2 backscatter

U. Khati, Gulab Singh, S. Tebaldini
{"title":"Stock Volume Loss Estimation in Poplars using Regression Models and ALOS-2/PALSAR-2 backscatter","authors":"U. Khati, Gulab Singh, S. Tebaldini","doi":"10.1109/IGARSS.2019.8900031","DOIUrl":null,"url":null,"abstract":"Stock volume is an important forest inventory parameter. In case of agro-forests and plantation forests, stock volume estimates are important as they provide reliable indicator of the productivity of these species. In this study stock volume loss due to harvest of polar plantations between 2017 and 2018 are estimated using ALOS-2/PALSAR-2 backscatter data. Using simple linear regression models the AGB of the plantations before and after harvest are estimated. These are converted to stock volume loss per hectare. From field inventory, the actual stock volume during harvest are measured. These are validated against the estimations using two models – M1 and M2. Model M1, utilizes only HV-pol backscatter data and provides a lower accuracy with r2 = 0.46. Model M2 utilizes HH- and HV-pol backscatter and provides stock volume loss estimation with r2 = 0.51.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"23 1","pages":"5933-5935"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8900031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stock volume is an important forest inventory parameter. In case of agro-forests and plantation forests, stock volume estimates are important as they provide reliable indicator of the productivity of these species. In this study stock volume loss due to harvest of polar plantations between 2017 and 2018 are estimated using ALOS-2/PALSAR-2 backscatter data. Using simple linear regression models the AGB of the plantations before and after harvest are estimated. These are converted to stock volume loss per hectare. From field inventory, the actual stock volume during harvest are measured. These are validated against the estimations using two models – M1 and M2. Model M1, utilizes only HV-pol backscatter data and provides a lower accuracy with r2 = 0.46. Model M2 utilizes HH- and HV-pol backscatter and provides stock volume loss estimation with r2 = 0.51.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于回归模型和ALOS-2/PALSAR-2反向散射的杨树蓄积量损失估算
蓄积量是森林资源清查的重要参数。就农用林和人工林而言,蓄积量估计数很重要,因为它们提供了这些物种生产力的可靠指标。在本研究中,使用ALOS-2/PALSAR-2背向散射数据估算了2017年至2018年间极地人工林采伐造成的蓄积量损失。利用简单的线性回归模型估计了采收前后人工林的AGB。这些被转换成每公顷的蓄积量损失。根据田间库存,测量收获期间的实际库存量。使用两个模型- M1和M2对这些估计进行了验证。M1模型仅利用HV-pol后向散射数据,精度较低,r2 = 0.46。M2模型利用HH-和HV-pol后向散射,提供了r2 = 0.51的库存体积损失估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1