M. Martyanov, V. Ginzburg, A. Balakin, S. Skobelev, D. Silin, A. Kochetkov, I. Yakovlev, Alexey Kuzmin, S. Mironov, I. Shaikin, Sergey Stukachev, A. Shaykin, E. Khazanov, A. Litvak
{"title":"Suppressing small-scale self-focusing of high-power femtosecond pulses","authors":"M. Martyanov, V. Ginzburg, A. Balakin, S. Skobelev, D. Silin, A. Kochetkov, I. Yakovlev, Alexey Kuzmin, S. Mironov, I. Shaikin, Sergey Stukachev, A. Shaykin, E. Khazanov, A. Litvak","doi":"10.1017/hpl.2023.20","DOIUrl":null,"url":null,"abstract":"Abstract It was shown experimentally that for a 65-fs 17-J pulse, the effect of filamentation instability, also known as small-scale self-focusing, is much weaker than that predicted by stationary and nonstationary theoretical models for high B-integral values. Although this discrepancy has been left unexplained at the moment, in practice no signs of filamentation may allow a breakthrough in nonlinear pulse post-compression at high laser energy.","PeriodicalId":54285,"journal":{"name":"High Power Laser Science and Engineering","volume":"41 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Power Laser Science and Engineering","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/hpl.2023.20","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract It was shown experimentally that for a 65-fs 17-J pulse, the effect of filamentation instability, also known as small-scale self-focusing, is much weaker than that predicted by stationary and nonstationary theoretical models for high B-integral values. Although this discrepancy has been left unexplained at the moment, in practice no signs of filamentation may allow a breakthrough in nonlinear pulse post-compression at high laser energy.
期刊介绍:
High Power Laser Science and Engineering (HPLaser) is an international, peer-reviewed open access journal which focuses on all aspects of high power laser science and engineering.
HPLaser publishes research that seeks to uncover the underlying science and engineering in the fields of high energy density physics, high power lasers, advanced laser technology and applications and laser components. Topics covered include laser-plasma interaction, ultra-intense ultra-short pulse laser interaction with matter, attosecond physics, laser design, modelling and optimization, laser amplifiers, nonlinear optics, laser engineering, optical materials, optical devices, fiber lasers, diode-pumped solid state lasers and excimer lasers.