Application of Improved Ant Colony Algorithm

Hongyan Shi, Zhaoyu Bei
{"title":"Application of Improved Ant Colony Algorithm","authors":"Hongyan Shi, Zhaoyu Bei","doi":"10.1109/ICNC.2008.75","DOIUrl":null,"url":null,"abstract":"A stochastic optimization algorithm is proposed by combining ant colony (ACO) algorithm with artificial fish-swarm algorithm (AFSA) for solving continuous space optimization problems. The algorithm is improved with the rapid search capability of AFSA and the good search characteristics of ACO, and the convergence speed of the presented algorithm is also improved for avoiding being trapped in local optimization. The improved algorithm has been tested for varieties of functions. And the algorithm can handle these optimization problems very well.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"5 1","pages":"284-288"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

A stochastic optimization algorithm is proposed by combining ant colony (ACO) algorithm with artificial fish-swarm algorithm (AFSA) for solving continuous space optimization problems. The algorithm is improved with the rapid search capability of AFSA and the good search characteristics of ACO, and the convergence speed of the presented algorithm is also improved for avoiding being trapped in local optimization. The improved algorithm has been tested for varieties of functions. And the algorithm can handle these optimization problems very well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进蚁群算法的应用
将蚁群算法(ACO)与人工鱼群算法(AFSA)相结合,提出一种求解连续空间优化问题的随机优化算法。利用蚁群算法的快速搜索能力和蚁群算法良好的搜索特性对算法进行了改进,并提高了算法的收敛速度,避免了陷入局部寻优。改进后的算法已对各种函数进行了测试。该算法可以很好地处理这些优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-Level Content-Based Endoscope Image Retrieval A New PSO Scheduling Simulation Algorithm Based on an Intelligent Compensation Particle Position Rounding off Genetic Algorithm with an Application to Complex Portfolio Selection Some Operations of L-Fuzzy Approximate Spaces On Residuated Lattices Image Edge Detection Based on Improved Local Fractal Dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1