Parwat Singh Anjana, Adithya Rajesh Chandrassery, Sathya Peri
{"title":"An Efficient Approach to Move Elements in a Distributed Geo-Replicated Tree","authors":"Parwat Singh Anjana, Adithya Rajesh Chandrassery, Sathya Peri","doi":"10.1109/CLOUD55607.2022.00071","DOIUrl":null,"url":null,"abstract":"Replicated tree data structures are extensively used in collaborative applications and distributed file systems, where clients often perform move operations. Local move operations at different replicas may be safe. However, remote move operations may not be safe. When clients perform arbitrary move operations concurrently on different replicas, it could result in various bugs, making this operation challenging to implement. Previous work has revealed bugs such as data duplication and cycling in replicated trees. In this paper, we present an efficient algorithm to perform move operations on the distributed replicated tree while ensuring eventual consistency. The proposed technique is primarily concerned with resolving conflicts efficiently, requires no interaction between replicas, and works well with network partitions. We use the last write win semantics for conflict resolution based on globally unique timestamps of operations. The proposed solution requires only one compensation operation to avoid cycles being formed when move operations are applied. The proposed approach achieves an effective speedup of 14.6× to 68.19× over the state-of-the-art approach in a geo-replicated setting.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"55 1","pages":"479-488"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Replicated tree data structures are extensively used in collaborative applications and distributed file systems, where clients often perform move operations. Local move operations at different replicas may be safe. However, remote move operations may not be safe. When clients perform arbitrary move operations concurrently on different replicas, it could result in various bugs, making this operation challenging to implement. Previous work has revealed bugs such as data duplication and cycling in replicated trees. In this paper, we present an efficient algorithm to perform move operations on the distributed replicated tree while ensuring eventual consistency. The proposed technique is primarily concerned with resolving conflicts efficiently, requires no interaction between replicas, and works well with network partitions. We use the last write win semantics for conflict resolution based on globally unique timestamps of operations. The proposed solution requires only one compensation operation to avoid cycles being formed when move operations are applied. The proposed approach achieves an effective speedup of 14.6× to 68.19× over the state-of-the-art approach in a geo-replicated setting.
期刊介绍:
Cessation.
IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)