{"title":"Analysis of the value of copper erythrocyte concentration measurement in the diagnosis of copper deficiency in bovines.","authors":"G. Postma, O. Degregorio, L. Minatel","doi":"10.2139/ssrn.4141055","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nA reliable and practical method for assessing Cu status in live animals is not available. Blood Cu levels may not accurately reflect the true Cu status of the herd, and can over-predict Cu status during stress and inflammation. On the other hand, assessment of liver Cu is the most reliable indicator of Cu stores, but it is an invasive procedure that requires specialized training. The aim of this study was to evaluate the usefulness of Cu levels in red blood cells to determine the Cu status, with special emphasis in their correlation with erythrocyte Cu, Zn superoxide dismutase enzyme activity (ESOD), in bovines with Cu deficiency induced by high molybdenum and sulfur levels in the diet.\n\n\nMETHODS\nThree similar assays were performed, with a total of twenty eight calves. The Cu-deficient group (n = 15) received a basal diet supplemented with 11 mg of Mo/kg DM as sodium molybdate, and S as sodium sulfate. The control group (n = 13) received a basal diet supplemented with 9 mg of Cu/kg DM as copper sulfate. Samples of blood and liver were taken every 28-35 days. Cu levels were measured in liver (expressed as µg/g DM), plasma (expressed as µg/dl), and erythrocytes (expressed as µg/g Hb) by flame atomic absorption spectroscopy. Superoxide dismutase (SOD1) activity was determined in red blood cells and was expressed as IU/mg hemoglobin. InfoStat Statistical Software 2020 was used for the statistical analysis. Cu levels in plasma, red blood cells and liver, and ESOD activity were analyzed by ANOVA. The correlation between erythrocyte Cu levels and the rest of the parameters were analyzed by Pearson Correlation test. Unweighted Least Squares Linear Regression of SOD1 was developed. The autocorrelation between the monthly measurements was also determined by Durbin-Watson test and autocorrelation function.\n\n\nRESULTS\nThe assays lasted 314-341 days, approximately. Levels indicative of Cu deficiency for bovines were detected at 224 days (23 ± 11.6 µg/g DM) for liver Cu concentration; and at 198 days (55 ± 10.4 µg/dl) for plasma Cu concentration, in Cu-deficient animals. Liver and plasma Cu values indicative of Cu deficiency were not observed in the control group. Pearson Correlation test indicated that all indices of Cu status used in this study were significantly correlated. The highest value was obtained between ESOD and red blood Cu (0.74). There was a significant correlation between red blood Cu and plasma Cu (0.65), and with hepatic Cu (0.57). ESOD activity showed a similar significant positive correlation with liver Cu concentrations and with plasma Cu (0.59 and 0.58, respectively).\n\n\nCONCLUSION\nThe extremely low levels of liver and plasma Cu, the ESOD activity, erythrocyte Cu levels, and the periocular achromotrichia observed in the Cu-deficient animals showed that the clinic phase of Cu deficiency was reached in this group. The ESOD activity and erythrocyte Cu levels showed a strong association, indicating that the values of erythrocyte Cu may serve as an effective tool in assessing Cu status and diagnose a long-term Cu deficiency in cattle.","PeriodicalId":17536,"journal":{"name":"Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements","volume":"R-26 1","pages":"127228"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4141055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
A reliable and practical method for assessing Cu status in live animals is not available. Blood Cu levels may not accurately reflect the true Cu status of the herd, and can over-predict Cu status during stress and inflammation. On the other hand, assessment of liver Cu is the most reliable indicator of Cu stores, but it is an invasive procedure that requires specialized training. The aim of this study was to evaluate the usefulness of Cu levels in red blood cells to determine the Cu status, with special emphasis in their correlation with erythrocyte Cu, Zn superoxide dismutase enzyme activity (ESOD), in bovines with Cu deficiency induced by high molybdenum and sulfur levels in the diet.
METHODS
Three similar assays were performed, with a total of twenty eight calves. The Cu-deficient group (n = 15) received a basal diet supplemented with 11 mg of Mo/kg DM as sodium molybdate, and S as sodium sulfate. The control group (n = 13) received a basal diet supplemented with 9 mg of Cu/kg DM as copper sulfate. Samples of blood and liver were taken every 28-35 days. Cu levels were measured in liver (expressed as µg/g DM), plasma (expressed as µg/dl), and erythrocytes (expressed as µg/g Hb) by flame atomic absorption spectroscopy. Superoxide dismutase (SOD1) activity was determined in red blood cells and was expressed as IU/mg hemoglobin. InfoStat Statistical Software 2020 was used for the statistical analysis. Cu levels in plasma, red blood cells and liver, and ESOD activity were analyzed by ANOVA. The correlation between erythrocyte Cu levels and the rest of the parameters were analyzed by Pearson Correlation test. Unweighted Least Squares Linear Regression of SOD1 was developed. The autocorrelation between the monthly measurements was also determined by Durbin-Watson test and autocorrelation function.
RESULTS
The assays lasted 314-341 days, approximately. Levels indicative of Cu deficiency for bovines were detected at 224 days (23 ± 11.6 µg/g DM) for liver Cu concentration; and at 198 days (55 ± 10.4 µg/dl) for plasma Cu concentration, in Cu-deficient animals. Liver and plasma Cu values indicative of Cu deficiency were not observed in the control group. Pearson Correlation test indicated that all indices of Cu status used in this study were significantly correlated. The highest value was obtained between ESOD and red blood Cu (0.74). There was a significant correlation between red blood Cu and plasma Cu (0.65), and with hepatic Cu (0.57). ESOD activity showed a similar significant positive correlation with liver Cu concentrations and with plasma Cu (0.59 and 0.58, respectively).
CONCLUSION
The extremely low levels of liver and plasma Cu, the ESOD activity, erythrocyte Cu levels, and the periocular achromotrichia observed in the Cu-deficient animals showed that the clinic phase of Cu deficiency was reached in this group. The ESOD activity and erythrocyte Cu levels showed a strong association, indicating that the values of erythrocyte Cu may serve as an effective tool in assessing Cu status and diagnose a long-term Cu deficiency in cattle.