Bibliometry-Aware and Domain-Specific Features for Discovering Publication Hierarchically-Ordered Contexts and Scholarly-Communication Structures

Pub Date : 2017-01-16 DOI:10.4236/SN.2017.61005
S. Bani-Ahmad
{"title":"Bibliometry-Aware and Domain-Specific Features for Discovering Publication Hierarchically-Ordered Contexts and Scholarly-Communication Structures","authors":"S. Bani-Ahmad","doi":"10.4236/SN.2017.61005","DOIUrl":null,"url":null,"abstract":"Discovering publication hierarchically-ordered contexts is the main task in context-based searching paradigm. The proposed techniques to discover publication contexts relies on the availability of domain-specific inputs, namely a pre-specified ontology terms. A problem with this technique is that the needed domain-specific inputs may not be available in some scientific disciplines. In this paper, we propose utilizing a powerful input that is naturally available in any scientific discipline to discover the hierarchically-ordered contexts of it, namely paper citation and co-authorship graphs. More specifically, we propose a set of domain-specific bibliometry-aware features that are automatically computable instead of domain-specific inputs that need experts’ efforts to prepare. Another benefit behind considering bibliometric-features to adapt to the special characteristics of the literature environment being targeted, which in turn facilitates contexts membership decision making. One key advantage of our proposal is that it considers temporal changes of the targeted publication set.","PeriodicalId":89852,"journal":{"name":"","volume":"11 1","pages":"61-79"},"PeriodicalIF":0.0,"publicationDate":"2017-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/SN.2017.61005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Discovering publication hierarchically-ordered contexts is the main task in context-based searching paradigm. The proposed techniques to discover publication contexts relies on the availability of domain-specific inputs, namely a pre-specified ontology terms. A problem with this technique is that the needed domain-specific inputs may not be available in some scientific disciplines. In this paper, we propose utilizing a powerful input that is naturally available in any scientific discipline to discover the hierarchically-ordered contexts of it, namely paper citation and co-authorship graphs. More specifically, we propose a set of domain-specific bibliometry-aware features that are automatically computable instead of domain-specific inputs that need experts’ efforts to prepare. Another benefit behind considering bibliometric-features to adapt to the special characteristics of the literature environment being targeted, which in turn facilitates contexts membership decision making. One key advantage of our proposal is that it considers temporal changes of the targeted publication set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发现出版物层次顺序上下文和学术交流结构的文献计量学感知和领域特定特征
发现按层次顺序排列的出版物上下文是基于上下文的搜索范式的主要任务。提出的发现发布上下文的技术依赖于领域特定输入的可用性,即预先指定的本体术语。这种技术的一个问题是,在某些科学学科中可能无法获得所需的特定于领域的输入。在本文中,我们建议利用在任何科学学科中自然可用的强大输入来发现其层次有序的上下文,即论文引用和共同作者图。更具体地说,我们提出了一组领域特定的文献计量感知特征,这些特征可以自动计算,而不是需要专家努力准备的领域特定输入。考虑文献计量学的另一个好处是适应所针对的文献环境的特点,这反过来又促进了上下文成员决策。我们的建议的一个关键优势是它考虑了目标发布集的时间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1