On coinductive equivalences for higher-order probabilistic functional programs

Ugo Dal Lago, D. Sangiorgi, Michele Alberti
{"title":"On coinductive equivalences for higher-order probabilistic functional programs","authors":"Ugo Dal Lago, D. Sangiorgi, Michele Alberti","doi":"10.1145/2535838.2535872","DOIUrl":null,"url":null,"abstract":"We study bisimulation and context equivalence in a probabilistic lambda-calculus. The contributions of this paper are threefold. Firstly we show a technique for proving congruence of probabilistic applicative bisimilarity. While the technique follows Howe's method, some of the technicalities are quite different, relying on non-trivial \"disentangling\" properties for sets of real numbers. Secondly we show that, while bisimilarity is in general strictly finer than context equivalence, coincidence between the two relations is attained on pure lambda-terms. The resulting equality is that induced by Levy-Longo trees, generally accepted as the finest extensional equivalence on pure lambda-terms under a lazy regime. Finally, we derive a coinductive characterisation of context equivalence on the whole probabilistic language, via an extension in which terms akin to distributions may appear in redex position. Another motivation for the extension is that its operational semantics allows us to experiment with a different congruence technique, namely that of logical bisimilarity.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535838.2535872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

We study bisimulation and context equivalence in a probabilistic lambda-calculus. The contributions of this paper are threefold. Firstly we show a technique for proving congruence of probabilistic applicative bisimilarity. While the technique follows Howe's method, some of the technicalities are quite different, relying on non-trivial "disentangling" properties for sets of real numbers. Secondly we show that, while bisimilarity is in general strictly finer than context equivalence, coincidence between the two relations is attained on pure lambda-terms. The resulting equality is that induced by Levy-Longo trees, generally accepted as the finest extensional equivalence on pure lambda-terms under a lazy regime. Finally, we derive a coinductive characterisation of context equivalence on the whole probabilistic language, via an extension in which terms akin to distributions may appear in redex position. Another motivation for the extension is that its operational semantics allows us to experiment with a different congruence technique, namely that of logical bisimilarity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高阶概率泛函规划的协归纳等价
我们研究了概率λ演算中的双模拟和上下文等价。本文的贡献有三个方面。首先给出了一种概率应用双相似度的同余证明方法。虽然这项技术沿用了Howe的方法,但一些技术上的差异很大,它依赖于实数集的非平凡“解纠缠”特性。其次,我们表明,虽然双相似性一般严格优于上下文等价,但在纯lambda项上,两种关系之间的重合是可以实现的。所得的等式是由Levy-Longo树推导出来的,通常被认为是惰性状态下纯λ项上最优的扩展等价。最后,我们推导了整个概率语言上上下文等价的协归纳特征,通过一个扩展,其中类似于分布的项可能出现在索引位置。扩展的另一个动机是,它的操作语义允许我们试验不同的同余技术,即逻辑双相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Verified systems Session details: Semantic models 2 Session details: Program analysis 3 Session details: Program analysis 1 Session details: Type system design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1