A computationally efficient mixture innovation model for time-varying parameter regressions

IF 2.5 Q2 ECONOMICS Econometrics and Statistics Pub Date : 2023-08-12 DOI:10.1016/j.ecosta.2023.08.001
Zhongfang He
{"title":"A computationally efficient mixture innovation model for time-varying parameter regressions","authors":"Zhongfang He","doi":"10.1016/j.ecosta.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><div><span>The mixture innovation (MI) model places a spike-and-slab mixture distribution for the innovations of time-varying regression coefficients and permits flexible time variation patterns while allowing for dynamic shrinkage. Despite its appeal, the standard Bayesian algorithm to block sample the vector of 0/1 mixture indicators at each time </span><span><math><mi>t</mi></math></span> needs to evaluate the model likelihood over all its <span><math><msup><mn>2</mn><mi>K</mi></msup></math></span> scenarios for a regression model with <span><math><mi>K</mi></math></span><span> regressors and becomes impractical when </span><span><math><mi>K</mi></math></span><span> grows. As an alternative, a new specification of the MI model is proposed in which the 0/1 mixture indicators in the original MI model are approximated by a logistic function of latent continuous variables. As such the model likelihood only needs to be evaluated twice in an Metropolis-Hastings step to block update the latent variables and hence the approximated mixture indicators at each time </span><span><math><mi>t</mi></math></span>, offering large improvement in computational efficiency while keeping the benefits of the MI model. An efficient MCMC algorithm is developed to estimate the new model. A simulation study shows that the new model can achieve the same level of estimation accuracy as the original MI model but at a much smaller computation cost. The new model is further tested in two empirical applications where block sampling the mixture indicators at each time <span><math><mi>t</mi></math></span> in the original MI model is practically infeasible.</div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"37 ","pages":"Pages 250-269"},"PeriodicalIF":2.5000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245230622300059X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The mixture innovation (MI) model places a spike-and-slab mixture distribution for the innovations of time-varying regression coefficients and permits flexible time variation patterns while allowing for dynamic shrinkage. Despite its appeal, the standard Bayesian algorithm to block sample the vector of 0/1 mixture indicators at each time t needs to evaluate the model likelihood over all its 2K scenarios for a regression model with K regressors and becomes impractical when K grows. As an alternative, a new specification of the MI model is proposed in which the 0/1 mixture indicators in the original MI model are approximated by a logistic function of latent continuous variables. As such the model likelihood only needs to be evaluated twice in an Metropolis-Hastings step to block update the latent variables and hence the approximated mixture indicators at each time t, offering large improvement in computational efficiency while keeping the benefits of the MI model. An efficient MCMC algorithm is developed to estimate the new model. A simulation study shows that the new model can achieve the same level of estimation accuracy as the original MI model but at a much smaller computation cost. The new model is further tested in two empirical applications where block sampling the mixture indicators at each time t in the original MI model is practically infeasible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个计算效率高的时变参数回归混合创新模型
混合创新(MI)模型为时变回归系数的创新提供了一个尖峰-板混合分布,并允许灵活的时间变化模式,同时允许动态收缩。尽管它很吸引人,但对于一个有K个回归量的回归模型,每次t时对0/1混合指标向量进行块采样的标准贝叶斯算法需要在所有2K个场景中评估模型的可能性,并且当K增长时变得不切实际。作为替代方案,提出了一种新的MI模型规范,其中原始MI模型中的0/1混合指标由潜在连续变量的逻辑函数近似。因此,模型似然只需要在Metropolis-Hastings步骤中评估两次,以阻止在每次时间t更新潜在变量和近似混合指标,从而在保持MI模型优点的同时大幅提高计算效率。提出了一种高效的MCMC算法对新模型进行估计。仿真研究表明,新模型可以达到与原MI模型相同的估计精度,但计算成本要小得多。新模型在两个经验应用中得到了进一步的检验,其中原始MI模型中每次t时间对混合指标进行块采样实际上是不可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
期刊最新文献
Editorial Board Editorial Board The benefits of returns and options in the estimation of GARCH models. A Heston-Nandi GARCH insight Approximation of BSDE with hidden forward equation and unknown volatility GMM Model Averaging Using Higher Order Approximations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1