Single-particle steering and nonlocality: The consecutive Stern-Gerlach experiments

Beńıtez Rodŕıguez, Piceno Mart́ınez, L. A. Aguilar
{"title":"Single-particle steering and nonlocality: The consecutive Stern-Gerlach experiments","authors":"Beńıtez Rodŕıguez, Piceno Mart́ınez, L. A. Aguilar","doi":"10.1103/PHYSREVA.103.042217","DOIUrl":null,"url":null,"abstract":"Quantum nonlocality and quantum steering are fundamental correlations of quantum systems which can not be created using classical resources only. Nonlocality describes the ability to influence the possible results of measurements carried out in distant systems, in quantum steering Alice remotely steers Bob's state. Research in nonlocality and steering possess a fundamental interest for the development of quantum information and in many applications requiring nonlocal resources like quantum key distribution. On the other hand, the Stern-Gerlach experiment holds an important place in the history, development and teaching of quantum mechanics and quantum information. In particular, the thought experiment of consecutive Stern-Gerlach Experiments is commonly used to exemplify the concept of non-commutativity between quantum operators. However, to the best of our knowledge, the consecutive Stern-Gerlach Experiments have not been treated in a fully quantum manner yet, and it is a widely accepted idea that atoms crossing consecutive Stern-Gerlach Experiments follow classical paths. Here we demonstrate that two consecutive Stern-Gerach Experiment generate nonlocality and steering, these nonlocal effects strongly modify our usual understanding of this experiment. Also, we discuss the implications of this result and its relation with the entanglement. This suggests the use of quantum correlations, of particles possessing mass, to generate nonlocal taks using this venerable experiment.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVA.103.042217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Quantum nonlocality and quantum steering are fundamental correlations of quantum systems which can not be created using classical resources only. Nonlocality describes the ability to influence the possible results of measurements carried out in distant systems, in quantum steering Alice remotely steers Bob's state. Research in nonlocality and steering possess a fundamental interest for the development of quantum information and in many applications requiring nonlocal resources like quantum key distribution. On the other hand, the Stern-Gerlach experiment holds an important place in the history, development and teaching of quantum mechanics and quantum information. In particular, the thought experiment of consecutive Stern-Gerlach Experiments is commonly used to exemplify the concept of non-commutativity between quantum operators. However, to the best of our knowledge, the consecutive Stern-Gerlach Experiments have not been treated in a fully quantum manner yet, and it is a widely accepted idea that atoms crossing consecutive Stern-Gerlach Experiments follow classical paths. Here we demonstrate that two consecutive Stern-Gerach Experiment generate nonlocality and steering, these nonlocal effects strongly modify our usual understanding of this experiment. Also, we discuss the implications of this result and its relation with the entanglement. This suggests the use of quantum correlations, of particles possessing mass, to generate nonlocal taks using this venerable experiment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单粒子转向与非定域性:连续的Stern-Gerlach实验
量子非定域性和量子导向是量子系统的基本关联,不能仅用经典资源来创建。非定域性描述了影响在遥远系统中进行的测量的可能结果的能力,在量子操纵中,Alice远程操纵Bob的状态。非局域性和方向性的研究对于量子信息的发展和许多需要非局域性资源(如量子密钥分发)的应用具有重要意义。另一方面,Stern-Gerlach实验在量子力学和量子信息的历史、发展和教学中占有重要地位。特别是,连续Stern-Gerlach实验的思想实验通常被用来举例说明量子算子之间的非交换性概念。然而,据我们所知,连续的斯特恩-格拉赫实验还没有以完全量子的方式进行处理,一个被广泛接受的观点是,原子穿过连续的斯特恩-格拉赫实验遵循经典路径。在这里,我们证明了两个连续的Stern-Gerach实验产生非局域性和转向,这些非局域效应强烈地改变了我们通常对这个实验的理解。我们还讨论了这一结果的意义及其与纠缠的关系。这表明利用量子相关性,即拥有质量的粒子,利用这个古老的实验来产生非局部值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Quantum Machine Learning A Wave Nature-Based Interpretation of The Nonclassical Feature of Photon Bunching On A Beam Splitter The Future of Quantum Theory: A Way Out of the Impasse Partial Measurements of Quantum Systems Emergence of the Classical from within the Quantum Universe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1