{"title":"Roles of Two F-Box Proteins: FBXL14 in the Periosteum and FBXW2 at Elastic Fibers","authors":"M. Akiyama","doi":"10.3390/osteology3010001","DOIUrl":null,"url":null,"abstract":"I previously reported that F-box/leucine-rich repeat protein 14 (FBXL14) expressed in periosteum-derived cells, and F-box and WD-40 domain-containing protein 2 (FBXW2) in the periosteum form a fiber-like structure. Here, two culture medium conditions, that is, media with and without ascorbic acid, were compared during explant culture. In the absence of ascorbic acid, the expression patterns of osteocalcin, FBXW2, and elastin were compared using fluorescent immunostaining during weeks 3–5. By observing the periosteum, cambium layer and bone, I demonstrated FBXL14 expression in micro-vessels and bone lacuna. Fluorescent immunostaining revealed that, without ascorbic acid, the FBXL14 layer was thin. Conversely, in the presence of ascorbic acid, FBXL14 formed a thick membrane-like structure inside the periosteum, and the multilayer of periosteum-derived cells (PDCs) was strong. The expression patterns of osteocalcin and FBXW2 were similar. Elastin retained its fiber structure for up to five weeks. Although osteocalcin and FBXW2 were expressed in regions similar to elastin, they could not retain their fiber structures. In conclusion, FBXL14 appears to play a role in preparing a native scaffold for forming a multilayered sheet of PDCs inside the periosteum. FBXW2 and osteocalcin appear to separate from elastic fibers during calcification.","PeriodicalId":36674,"journal":{"name":"Clinical Osteology","volume":"214 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Osteology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/osteology3010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
I previously reported that F-box/leucine-rich repeat protein 14 (FBXL14) expressed in periosteum-derived cells, and F-box and WD-40 domain-containing protein 2 (FBXW2) in the periosteum form a fiber-like structure. Here, two culture medium conditions, that is, media with and without ascorbic acid, were compared during explant culture. In the absence of ascorbic acid, the expression patterns of osteocalcin, FBXW2, and elastin were compared using fluorescent immunostaining during weeks 3–5. By observing the periosteum, cambium layer and bone, I demonstrated FBXL14 expression in micro-vessels and bone lacuna. Fluorescent immunostaining revealed that, without ascorbic acid, the FBXL14 layer was thin. Conversely, in the presence of ascorbic acid, FBXL14 formed a thick membrane-like structure inside the periosteum, and the multilayer of periosteum-derived cells (PDCs) was strong. The expression patterns of osteocalcin and FBXW2 were similar. Elastin retained its fiber structure for up to five weeks. Although osteocalcin and FBXW2 were expressed in regions similar to elastin, they could not retain their fiber structures. In conclusion, FBXL14 appears to play a role in preparing a native scaffold for forming a multilayered sheet of PDCs inside the periosteum. FBXW2 and osteocalcin appear to separate from elastic fibers during calcification.