Using bagging and boosting algorithms for 3D object labeling

Omar Herouane, L. Moumoun, T. Gadi
{"title":"Using bagging and boosting algorithms for 3D object labeling","authors":"Omar Herouane, L. Moumoun, T. Gadi","doi":"10.1109/IACS.2016.7476070","DOIUrl":null,"url":null,"abstract":"Machine learning has recently become an interesting research field in 3D objects preprocessing. However, few algorithms using this automatic technique have been proposed to learn 3D objects parts. The aim of this paper is to present two simple and efficient approaches to learn parts of a 3D object. These approaches use Bagging or multiclass Boosting algorithms and the Shape Spectrum Descriptor (SSD) to build the classification models. The trained models will assign an appropriate label to each part of the 3D object of the database. The high quality of the quantitative and qualitative results obtained demonstrated the efficiency and the performance of the proposed approaches.","PeriodicalId":6579,"journal":{"name":"2016 7th International Conference on Information and Communication Systems (ICICS)","volume":"10 1","pages":"310-315"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACS.2016.7476070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Machine learning has recently become an interesting research field in 3D objects preprocessing. However, few algorithms using this automatic technique have been proposed to learn 3D objects parts. The aim of this paper is to present two simple and efficient approaches to learn parts of a 3D object. These approaches use Bagging or multiclass Boosting algorithms and the Shape Spectrum Descriptor (SSD) to build the classification models. The trained models will assign an appropriate label to each part of the 3D object of the database. The high quality of the quantitative and qualitative results obtained demonstrated the efficiency and the performance of the proposed approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用袋装和增强算法进行三维物体标记
近年来,机器学习已成为三维物体预处理中一个有趣的研究领域。然而,很少有人提出使用这种自动技术来学习三维物体零件的算法。本文的目的是介绍两种简单有效的方法来学习3D物体的部分。这些方法使用Bagging或多类Boosting算法和形状谱描述符(SSD)来构建分类模型。经过训练的模型将为数据库中3D对象的每个部分分配适当的标签。所获得的高质量的定量和定性结果证明了所提出方法的效率和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental study and praticai realization of a reconciliation method for quantum key distribution system DAS: Distributed analytics system for Arabic search engines Parallel coordinates metrics for classification visualization Importance of service integration in e-government implementations Implementation of parallel model checking for computer-based test security design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1