Comparison of Logistic Regression and Generalized Linear Model for Identifying Accurate At – Risk Students

K. Harini, K. Rekha
{"title":"Comparison of Logistic Regression and Generalized Linear Model for Identifying Accurate At – Risk Students","authors":"K. Harini, K. Rekha","doi":"10.47059/alinteri/v36i1/ajas21060","DOIUrl":null,"url":null,"abstract":"Aim: To predict the accuracy percentage of At - risk students based on High withdrawal and Failure rate. Materials and methods: Logistic Regression with sample size = 20 and Generalised Linear Model (GLM) with sample size = 20 was iterated different times for predicting accuracy percentage of At - risk students. The Novel sigmoid function used in Logistic Regression maps prediction to probabilities which helps to improve the prediction of accuracy percentage. Results and Discussion: Logistic Regression has significantly better accuracy (94.48 %) compared to GLM accuracy (92.76 %). There was a statistical significance between Logistic regression and GLM (p=0.000) (p<0.05). Conclusion: Logistic Regression with Novel Sigmoid function helps in predicting with more accuracy percentage of At - risk students.","PeriodicalId":42396,"journal":{"name":"Alinteri Journal of Agriculture Sciences","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alinteri Journal of Agriculture Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47059/alinteri/v36i1/ajas21060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: To predict the accuracy percentage of At - risk students based on High withdrawal and Failure rate. Materials and methods: Logistic Regression with sample size = 20 and Generalised Linear Model (GLM) with sample size = 20 was iterated different times for predicting accuracy percentage of At - risk students. The Novel sigmoid function used in Logistic Regression maps prediction to probabilities which helps to improve the prediction of accuracy percentage. Results and Discussion: Logistic Regression has significantly better accuracy (94.48 %) compared to GLM accuracy (92.76 %). There was a statistical significance between Logistic regression and GLM (p=0.000) (p<0.05). Conclusion: Logistic Regression with Novel Sigmoid function helps in predicting with more accuracy percentage of At - risk students.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Logistic回归与广义线性模型在准确识别高危学生中的比较
目的:基于高退课率和失败率预测高危学生的准确率。材料与方法:采用Logistic回归(样本量为20)和广义线性模型(GLM)(样本量为20)迭代不同次数预测高危学生的准确率。逻辑回归中使用的新型s型函数将预测映射为概率,有助于提高预测的准确率。结果与讨论:Logistic回归的准确率(94.48%)明显优于GLM的准确率(92.76%)。Logistic回归与GLM的差异有统计学意义(p=0.000) (p<0.05)。结论:采用新颖的s型函数进行Logistic回归有助于提高对高危学生的预测准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Alinteri Journal of Agriculture Sciences
Alinteri Journal of Agriculture Sciences AGRICULTURE, MULTIDISCIPLINARY-
自引率
0.00%
发文量
6
期刊最新文献
Efficacy of Senna Leaves Extract and Rosuvastatin on Blood Parameters of Inducing Hyperlipidemia Laboratory Rats The Response of Growth and Yield of Sweet Pepper (Capsicum Annuum) to the Spraying with Nano-amino Acids and Potassium Silicate Effect of Organic Fertilization with Humic Acid and Foliar Spraying with Bread Yeast Extract on the Growth and Yield of the Solanum Melongena L The Effect of different Types of Organic Fertilizers on the Growth and Yield of Vegetable Plants Risk Management and Operational Performance of Hospitality Enterprises – A Case Study in the North Central Region of Vietnam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1