{"title":"Interactive ray tracing of time varying data","authors":"E. Reinhard, C. Hansen, S. Parker","doi":"10.2312/EGPGV/EGPGV02/077-082","DOIUrl":null,"url":null,"abstract":"We present a simple and effective algorithm for ray tracing iso-surfaces of time varying data sets. Each time step is partitioned into separate ranges of potentional iso-surface values. This creates a large number of relatively small files. Out-of-core rendering is implemented by reading for each time step the relevant iso-surface file, which contains its own spatial subdivision as well as the volumetric data. Since any of these data partitions is smaller than a single time step, the I/O bottleneck is overcome. Our method capitalizes on the ability of modern architectures to stream data off disk without interference of the operating system. Additionally, only a fraction of a time-step is held in memory at any moment during the visualization, which significantly reduces the required amount of internal memory.","PeriodicalId":90824,"journal":{"name":"Eurographics Symposium on Parallel Graphics and Visualization : EG PGV : [proceedings]. Eurographics Symposium on Parallel Graphics and Visualization","volume":"17 1","pages":"77-82"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Symposium on Parallel Graphics and Visualization : EG PGV : [proceedings]. Eurographics Symposium on Parallel Graphics and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/EGPGV/EGPGV02/077-082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
We present a simple and effective algorithm for ray tracing iso-surfaces of time varying data sets. Each time step is partitioned into separate ranges of potentional iso-surface values. This creates a large number of relatively small files. Out-of-core rendering is implemented by reading for each time step the relevant iso-surface file, which contains its own spatial subdivision as well as the volumetric data. Since any of these data partitions is smaller than a single time step, the I/O bottleneck is overcome. Our method capitalizes on the ability of modern architectures to stream data off disk without interference of the operating system. Additionally, only a fraction of a time-step is held in memory at any moment during the visualization, which significantly reduces the required amount of internal memory.