Consequences of micrometeoroid/orbital debris penetrations on the International Space Station

H. Evans, J. Hyde, Eric L. Christansen, D. M. Lear
{"title":"Consequences of micrometeoroid/orbital debris penetrations on the International Space Station","authors":"H. Evans, J. Hyde, Eric L. Christansen, D. M. Lear","doi":"10.1115/hvis2019-018","DOIUrl":null,"url":null,"abstract":"\n Risk from micrometeoroid and orbital debris (MMOD) impacts on space vehicles is often quantified in terms of the probability of no penetration (PNP). However, for large spacecraft, especially those with multiple compartments, a penetration may have a number of possible outcomes. The extent of the damage (diameter of hole, crack length or penetration depth), the location of the damage relative to critical equipment or crew, crew response, and even the time of day of the penetration are among the many factors that can affect the outcome. For the International Space Station (ISS), a Monte-Carlo style software code called Manned Spacecraft Crew Survivability (MSCSurv) is used to predict the probability of several outcomes of an MMOD penetration—broadly classified as loss of crew (LOC), crew evacuation (EVAC), loss of escape vehicle (LEV), and nominal end of mission (NEOM). By generating large numbers of MMOD impacts (typically in the hundreds of billions) and tracking the consequences, MSCSurv allows for the inclusion of a large number of parameters and models as well as enabling the consideration of uncertainties in these models and parameters. MSCSurv builds upon the results from NASA’s Bumper software (which provides the probability of penetration and critical input data to MSCSurv) to allow analysts to estimate the probability of LOC, EVAC, LEV, and NEOM. This paper provides an overview of the methodology used by NASA to quantify LOC, EVAC, LEV, and NEOM with particular emphasis on describing in broad terms how MSCSurv works and its capabilities and most significant models.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Risk from micrometeoroid and orbital debris (MMOD) impacts on space vehicles is often quantified in terms of the probability of no penetration (PNP). However, for large spacecraft, especially those with multiple compartments, a penetration may have a number of possible outcomes. The extent of the damage (diameter of hole, crack length or penetration depth), the location of the damage relative to critical equipment or crew, crew response, and even the time of day of the penetration are among the many factors that can affect the outcome. For the International Space Station (ISS), a Monte-Carlo style software code called Manned Spacecraft Crew Survivability (MSCSurv) is used to predict the probability of several outcomes of an MMOD penetration—broadly classified as loss of crew (LOC), crew evacuation (EVAC), loss of escape vehicle (LEV), and nominal end of mission (NEOM). By generating large numbers of MMOD impacts (typically in the hundreds of billions) and tracking the consequences, MSCSurv allows for the inclusion of a large number of parameters and models as well as enabling the consideration of uncertainties in these models and parameters. MSCSurv builds upon the results from NASA’s Bumper software (which provides the probability of penetration and critical input data to MSCSurv) to allow analysts to estimate the probability of LOC, EVAC, LEV, and NEOM. This paper provides an overview of the methodology used by NASA to quantify LOC, EVAC, LEV, and NEOM with particular emphasis on describing in broad terms how MSCSurv works and its capabilities and most significant models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微流星体/轨道碎片穿透对国际空间站的影响
微流星体和轨道碎片(MMOD)撞击空间飞行器的风险通常以不穿透概率(PNP)来量化。然而,对于大型航天器,特别是那些有多个舱室的航天器,穿透可能有许多可能的结果。损伤程度(孔直径、裂缝长度或侵彻深度)、相对于关键设备或人员的损伤位置、人员反应,甚至侵彻的时间都是影响结果的众多因素之一。对于国际空间站(ISS),一种蒙特卡罗风格的软件代码称为载人飞船乘员生存能力(MSCSurv),用于预测MMOD渗透的几种结果的概率——大致分为乘员损失(LOC)、乘员疏散(EVAC)、逃生车辆损失(LEV)和名义任务结束(NEOM)。通过产生大量MMOD影响(通常为数千亿)并跟踪其后果,MSCSurv允许包含大量参数和模型,并允许考虑这些模型和参数中的不确定性。MSCSurv基于NASA的Bumper软件(该软件为MSCSurv提供渗透概率和关键输入数据)的结果,允许分析人员估计LOC、EVAC、LEV和NEOM的概率。本文概述了NASA用于量化LOC、EVAC、LEV和NEOM的方法,特别强调了广义上描述MSCSurv是如何工作的,它的能力和最重要的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact Modeling for the Double Asteroid Redirection Test Mission Bulking as a Mechanism in the Failure of Advanced Ceramics Effects of Additional Body on Jet Velocity of Hyper-cumulation Assessment and Validation of Collision “Consequence” Method of Assessing Orbital Regime Risk Posed by Potential Satellite Conjunctions Dynamic response of graphene and yttria-stabilized zirconia (YSZ) composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1