Scalability Challenges of an Industrial Implicit Finite Element Code

François-Henry Rouet, C. Ashcraft, J. Dawson, R. Grimes, Erman Guleryuz, S. Koric, R. Lucas, J. Ong, T. Simons, Ting-Ting Zhu
{"title":"Scalability Challenges of an Industrial Implicit Finite Element Code","authors":"François-Henry Rouet, C. Ashcraft, J. Dawson, R. Grimes, Erman Guleryuz, S. Koric, R. Lucas, J. Ong, T. Simons, Ting-Ting Zhu","doi":"10.1109/IPDPS47924.2020.00059","DOIUrl":null,"url":null,"abstract":"LS-DYNA is a well-known multiphysics code with both explicit and implicit time stepping capabilities. Implicit simulations rely heavily on sparse matrix computations, in particular direct solvers, and are notoriously much harder to scale than explicit simulations. In this paper, we investigate the scalability challenges of the implicit structural mode of LS- DYNA. In particular, we focus on linear constraint analysis, sparse matrix reordering, symbolic factorization, and numerical factorization. Our problem of choice for this study is a thermomechanical simulation of jet engine models built by Rolls-Royce with up to 200 million degrees of freedom, or equations. The models are used for engine performance analysis and design optimization, in particular optimization of tip clearances in the compressor and turbine sections of the engine. We present results using as many as 131,072 cores on the Blue Waters Cray XE6/XK7 supercomputer at NCSA and the Titan Cray XK7 supercomputer at OLCF. Since the main focus is on general linear algebra problems, this work is of interest for all linear algebra practitioners, not only developers of implicit finite element codes.","PeriodicalId":6805,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"27 1","pages":"505-514"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS47924.2020.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

LS-DYNA is a well-known multiphysics code with both explicit and implicit time stepping capabilities. Implicit simulations rely heavily on sparse matrix computations, in particular direct solvers, and are notoriously much harder to scale than explicit simulations. In this paper, we investigate the scalability challenges of the implicit structural mode of LS- DYNA. In particular, we focus on linear constraint analysis, sparse matrix reordering, symbolic factorization, and numerical factorization. Our problem of choice for this study is a thermomechanical simulation of jet engine models built by Rolls-Royce with up to 200 million degrees of freedom, or equations. The models are used for engine performance analysis and design optimization, in particular optimization of tip clearances in the compressor and turbine sections of the engine. We present results using as many as 131,072 cores on the Blue Waters Cray XE6/XK7 supercomputer at NCSA and the Titan Cray XK7 supercomputer at OLCF. Since the main focus is on general linear algebra problems, this work is of interest for all linear algebra practitioners, not only developers of implicit finite element codes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业隐式有限元代码的可扩展性挑战
LS-DYNA是一个众所周知的多物理场代码,具有显式和隐式时间步进功能。隐式模拟严重依赖于稀疏矩阵计算,特别是直接求解,并且比显式模拟更难扩展。本文研究了LS- DYNA隐式结构模式的可扩展性问题。我们特别关注线性约束分析、稀疏矩阵重排序、符号分解和数值分解。我们在这项研究中选择的问题是劳斯莱斯制造的喷气发动机模型的热力模拟,该模型具有高达2亿个自由度或方程。该模型用于发动机性能分析和设计优化,特别是发动机压气机和涡轮段叶尖间隙的优化。我们展示了在NCSA的Blue Waters Cray XE6/XK7超级计算机和OLCF的Titan Cray XK7超级计算机上使用多达131,072个内核的结果。由于主要的焦点是一般的线性代数问题,这项工作是所有线性代数实践者感兴趣,而不仅仅是隐式有限元代码的开发人员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asynch-SGBDT: Train Stochastic Gradient Boosting Decision Trees in an Asynchronous Parallel Manner Resilience at Extreme Scale and Connections with Other Domains A Tale of Two C's: Convergence and Composability 12 Ways to Fool the Masses with Irreproducible Results Is Asymptotic Cost Analysis Useful in Developing Practical Parallel Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1