Building smart memories and high-speed cloud services for the internet of things with derecho

Sagar Jha, J. Behrens, Theo Gkountouvas, Mae Milano, Weijia Song, E. Tremel, Sydney Zink, K. Birman, R. V. Renesse
{"title":"Building smart memories and high-speed cloud services for the internet of things with derecho","authors":"Sagar Jha, J. Behrens, Theo Gkountouvas, Mae Milano, Weijia Song, E. Tremel, Sydney Zink, K. Birman, R. V. Renesse","doi":"10.1145/3127479.3134597","DOIUrl":null,"url":null,"abstract":"The coming generation of Internet-of-Things (IoT) applications will process massive amounts of incoming data while supporting data mining and online learning. In cases with demanding real-time requirements, such systems behave as smart memories: a high-bandwidth service that captures sensor input, processes it using machine-learning tools, replicates and stores \"interesting\" data (discarding uninteresting content), updates knowledge models, and triggers urgently-needed responses. Derecho is a high-throughput library for building smart memories and similar services. At its core Derecho implements atomic multicast (Vertical Paxos) and state machine replication (the classic durable Paxos). Derecho's replicated template defines a replicated type; the corresponding objects are associated with subgroups, which can be sharded into key-value structures. The persistent and volatile storage templates implement version vectors with optional NVM persistence. These support time-indexed access, offering lock-free snapshot isolation that blends temporal precision and causal consistency. Derecho automates application management, supporting multigroup structures and providing consistent knowledge of the current membership mapping. A query can access data from many shards or subgroups, and consistency is guaranteed without any form of distributed locking. Whereas many systems run consensus on the critical path, Derecho requires consensus only when updating membership. By leveraging an RDMA data plane and NVM storage, and adopting a novel receiver-side batching technique, Derecho can saturate a 12.5GB RDMA network, sending millions of events per second in each subgroup or shard. In a single subgroup with 2--16 members, through-put peaks at 16 GB/s for large (100MB or more) objects. While key-value subgroups would typically use 2 or 3-member shards, unsharded subgroups could be large. In tests with a 128-member group, Derecho's multicast and Paxos protocols were just 3--5x slower than for a small group, depending on the traffic pattern. With network contention, slow members, or overlapping groups that generate concurrent traffic, Derecho's protocols remain stable and adapt to the available bandwidth.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":"205 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3134597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The coming generation of Internet-of-Things (IoT) applications will process massive amounts of incoming data while supporting data mining and online learning. In cases with demanding real-time requirements, such systems behave as smart memories: a high-bandwidth service that captures sensor input, processes it using machine-learning tools, replicates and stores "interesting" data (discarding uninteresting content), updates knowledge models, and triggers urgently-needed responses. Derecho is a high-throughput library for building smart memories and similar services. At its core Derecho implements atomic multicast (Vertical Paxos) and state machine replication (the classic durable Paxos). Derecho's replicated template defines a replicated type; the corresponding objects are associated with subgroups, which can be sharded into key-value structures. The persistent and volatile storage templates implement version vectors with optional NVM persistence. These support time-indexed access, offering lock-free snapshot isolation that blends temporal precision and causal consistency. Derecho automates application management, supporting multigroup structures and providing consistent knowledge of the current membership mapping. A query can access data from many shards or subgroups, and consistency is guaranteed without any form of distributed locking. Whereas many systems run consensus on the critical path, Derecho requires consensus only when updating membership. By leveraging an RDMA data plane and NVM storage, and adopting a novel receiver-side batching technique, Derecho can saturate a 12.5GB RDMA network, sending millions of events per second in each subgroup or shard. In a single subgroup with 2--16 members, through-put peaks at 16 GB/s for large (100MB or more) objects. While key-value subgroups would typically use 2 or 3-member shards, unsharded subgroups could be large. In tests with a 128-member group, Derecho's multicast and Paxos protocols were just 3--5x slower than for a small group, depending on the traffic pattern. With network contention, slow members, or overlapping groups that generate concurrent traffic, Derecho's protocols remain stable and adapt to the available bandwidth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过derecho为物联网构建智能记忆和高速云服务
下一代物联网(IoT)应用将处理大量传入数据,同时支持数据挖掘和在线学习。在对实时性要求很高的情况下,这样的系统表现得像智能存储器:一种高带宽服务,可以捕获传感器输入,使用机器学习工具对其进行处理,复制和存储“感兴趣的”数据(丢弃无兴趣的内容),更新知识模型,并触发紧急需要的响应。Derecho是一个用于构建智能内存和类似服务的高吞吐量库。Derecho的核心实现了原子多播(垂直Paxos)和状态机复制(经典的持久Paxos)。Derecho的复制模板定义了一个复制类型;相应的对象与子组相关联,子组可以被分片为键值结构。持久性和易失性存储模板使用可选的NVM持久性实现版本向量。它们支持时间索引访问,提供无锁快照隔离,混合了时间精度和因果一致性。Derecho自动化应用程序管理,支持多组结构,并提供当前成员映射的一致知识。查询可以访问来自多个分片或子组的数据,并且在没有任何形式的分布式锁定的情况下保证一致性。尽管许多系统在关键路径上运行共识,但Derecho仅在更新成员时才需要共识。通过利用RDMA数据平面和NVM存储,并采用新颖的接收端批处理技术,Derecho可以使12.5GB的RDMA网络饱和,在每个子组或分片中每秒发送数百万个事件。在具有2—16个成员的单个子组中,对于大型(100MB或更多)对象,吞吐量峰值为16gb /s。虽然键值子组通常使用2或3个成员的分片,但未分片的子组可能很大。在一个有128名成员的小组的测试中,Derecho的多播和Paxos协议只比一个小组慢3- 5倍,具体取决于流量模式。在网络竞争、慢速成员或产生并发流量的重叠组的情况下,Derecho的协议保持稳定并适应可用带宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Janus: supporting heterogeneous power management in virtualized environments On-demand virtualization for live migration in bare metal cloud Preserving I/O prioritization in virtualized OSes To edge or not to edge? Indy: a software system for the dense cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1