Prediction on the Performance of Polymer-Based Mechanical Low-Pass Filters for High-G Accelerometers

Sehwan Song, Junyong Jang, Youlim Lee, Hanseong Jo, Sang-Hee Yoon
{"title":"Prediction on the Performance of Polymer-Based Mechanical Low-Pass Filters for High-G Accelerometers","authors":"Sehwan Song, Junyong Jang, Youlim Lee, Hanseong Jo, Sang-Hee Yoon","doi":"10.9766/kimst.2023.26.3.262","DOIUrl":null,"url":null,"abstract":"A polymer-based mechanical low-pass filter(m-LPF) for high-g accelerometers makes it possible to remove high-frequency transient noises from acceleration signals, thus ensuring repeatable and reliable measurement on high-g acceleration. We establish a prediction model for performance of m-LPF by combining a fundamental vibration model with the fractional derivative standard linear solid(FD SLS) model describing the storage modulus and loss modulus of polymers. Here, the FD SLS model is modified to consider the effect of m-LPF shape factor (i.e., thickness) on storage modulus and loss modulus. The prediction accuracy is verified by comparing the displacement transmissibility(or cut-off frequency) estimated using our model with that measured from 3 kinds of polymers(polysulfide rubber(PSR), silicone rubber(SR), and polydimethylsiloxane(PDMS)). Our findings will contribute a significant growth of m-LPF for high-g accelerometers.","PeriodicalId":17292,"journal":{"name":"Journal of the Korea Institute of Military Science and Technology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Institute of Military Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9766/kimst.2023.26.3.262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A polymer-based mechanical low-pass filter(m-LPF) for high-g accelerometers makes it possible to remove high-frequency transient noises from acceleration signals, thus ensuring repeatable and reliable measurement on high-g acceleration. We establish a prediction model for performance of m-LPF by combining a fundamental vibration model with the fractional derivative standard linear solid(FD SLS) model describing the storage modulus and loss modulus of polymers. Here, the FD SLS model is modified to consider the effect of m-LPF shape factor (i.e., thickness) on storage modulus and loss modulus. The prediction accuracy is verified by comparing the displacement transmissibility(or cut-off frequency) estimated using our model with that measured from 3 kinds of polymers(polysulfide rubber(PSR), silicone rubber(SR), and polydimethylsiloxane(PDMS)). Our findings will contribute a significant growth of m-LPF for high-g accelerometers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高加速度计用聚合物机械低通滤波器的性能预测
用于高加速度计的基于聚合物的机械低通滤波器(m-LPF)可以从加速度信号中去除高频瞬态噪声,从而确保高加速度测量的可重复和可靠。我们将基本振动模型与描述聚合物存储模量和损耗模量的分数阶导数标准线性固体(FD SLS)模型相结合,建立了m-LPF性能的预测模型。本文对FD SLS模型进行了修正,考虑了m-LPF形状因子(即厚度)对存储模量和损耗模量的影响。通过将我们的模型估计的位移传递率(或截止频率)与3种聚合物(聚硫橡胶(PSR)、硅橡胶(SR)和聚二甲基硅氧烷(PDMS))的位移传递率进行比较,验证了预测的准确性。我们的发现将有助于高加速度计m-LPF的显著增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Point Ahead Angle(PAA) Estimation and a Control Algorithm for Satellite-Pointing of the Ground Terminal in Satellite-to-Ground Optical Communication Semi-Supervised SAR Image Classification via Adaptive Threshold Selection A Simulator Development of Surface Warship Torpedo Defense System considering Bubble-Generating Wake Decoy Progressive Test and Evaluation Strategy for Verification of KF-X AESA Radar Development Characteristic Property of Combustion and Internal Ballistics of Triple-Based Propellant according to Particle Size of RDX
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1