Decentralized Information Filtering Under Skew-Laplace Noise

J. Vilà‐Valls, F. Vincent, P. Closas
{"title":"Decentralized Information Filtering Under Skew-Laplace Noise","authors":"J. Vilà‐Valls, F. Vincent, P. Closas","doi":"10.1109/IEEECONF44664.2019.9049032","DOIUrl":null,"url":null,"abstract":"Localization in large sensor networks requires decentralized computationally efficient filtering solutions. To model challenging indoor propagation conditions, including non-line-of-sight conditions and other channel variations, it may be necessary to consider non-Gaussian distributed errors. In this case, Gaussian filters cannot be considered as is and particle filters do not meet the system requirements on computational cost and/or available memory. In this article we explore decentralized Gaussian information filtering strategies under skew-Laplace errors, exploiting the hierarchically Gaussian formulation of such distribution. An illustrative example is considered to show the performance and support the discussion.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"2 1","pages":"291-295"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9049032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Localization in large sensor networks requires decentralized computationally efficient filtering solutions. To model challenging indoor propagation conditions, including non-line-of-sight conditions and other channel variations, it may be necessary to consider non-Gaussian distributed errors. In this case, Gaussian filters cannot be considered as is and particle filters do not meet the system requirements on computational cost and/or available memory. In this article we explore decentralized Gaussian information filtering strategies under skew-Laplace errors, exploiting the hierarchically Gaussian formulation of such distribution. An illustrative example is considered to show the performance and support the discussion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斜拉普拉斯噪声下的分散信息滤波
大型传感器网络中的定位需要分散的高效计算滤波解决方案。为了模拟具有挑战性的室内传播条件,包括非视距条件和其他信道变化,可能有必要考虑非高斯分布误差。在这种情况下,高斯滤波器不能被视为是和粒子滤波器不满足系统的计算成本和/或可用内存的要求。在本文中,我们利用这种分布的层次高斯公式,探讨了偏拉普拉斯误差下的分散高斯信息过滤策略。通过一个实例来说明其性能并支持讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised learning by a "softened" correlation game: duality and convergence Radar Beampattern Design for a Drone Swarm A Statistical Approach to Dynamic Synchrony Analysis of Neuronal Ensemble Spiking [Copyright notice] Phase Transition Analysis for Covariance Based Massive Random Access with Massive MIMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1