Combination and optimization of classifiers in gender classification using genetic programming

IF 0.6 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Knowledge-Based and Intelligent Engineering Systems Pub Date : 2005-01-01 DOI:10.3233/KES-2005-9101
Asifullah Khan, A. Majid, A. M. Mirza
{"title":"Combination and optimization of classifiers in gender classification using genetic programming","authors":"Asifullah Khan, A. Majid, A. M. Mirza","doi":"10.3233/KES-2005-9101","DOIUrl":null,"url":null,"abstract":"In this paper, we have investigated the problem of gender classification using frontal facial images. Four different classifiers, namely K-means, k-nearest neighbors, Linear Discriminant Analysis and Mahalanobis Distance Based classifiers are compared. Receiver operating characteristics (ROC) curve along with the area under the convex hull (AUCH) have been utilized as the performance measures of the classifiers at different feature subsets. To measure the overall performance of a classifier with single scalar value, the new scheme of finding the area under the convex hull of AUCH of ROC curves (AUCH of AUCHS) is proposed. It has been observed that, when the number of macro features is increased beyond 5, the AUCH saturates and even decreases for some classifiers, illustrating the curse of dimensionality. We then used genetic programming to combine classifiers and thus evolved an optimum combined classifier (OCC), producing better performance than the individual classifiers. We found that using only two features, the OCC has comparable performance to that of original classifier using 20 macro features. It produces true positive rate values as high as 0.94 corresponding to false positive rate as low as 0.15 for 1: 3 train to testing ratio. We also observed that heterogeneous combination of classifiers is more promising than the homogenous combination.","PeriodicalId":44076,"journal":{"name":"International Journal of Knowledge-Based and Intelligent Engineering Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Knowledge-Based and Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/KES-2005-9101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 49

Abstract

In this paper, we have investigated the problem of gender classification using frontal facial images. Four different classifiers, namely K-means, k-nearest neighbors, Linear Discriminant Analysis and Mahalanobis Distance Based classifiers are compared. Receiver operating characteristics (ROC) curve along with the area under the convex hull (AUCH) have been utilized as the performance measures of the classifiers at different feature subsets. To measure the overall performance of a classifier with single scalar value, the new scheme of finding the area under the convex hull of AUCH of ROC curves (AUCH of AUCHS) is proposed. It has been observed that, when the number of macro features is increased beyond 5, the AUCH saturates and even decreases for some classifiers, illustrating the curse of dimensionality. We then used genetic programming to combine classifiers and thus evolved an optimum combined classifier (OCC), producing better performance than the individual classifiers. We found that using only two features, the OCC has comparable performance to that of original classifier using 20 macro features. It produces true positive rate values as high as 0.94 corresponding to false positive rate as low as 0.15 for 1: 3 train to testing ratio. We also observed that heterogeneous combination of classifiers is more promising than the homogenous combination.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传规划的性别分类器组合与优化
本文研究了基于正面人脸图像的性别分类问题。比较了四种不同的分类器,即K-means、k-nearest neighbors、Linear Discriminant Analysis和Mahalanobis Distance Based classifier。利用接收者工作特征(ROC)曲线和凸壳下面积(AUCH)作为分类器在不同特征子集上的性能度量。为了衡量具有单一标量值的分类器的整体性能,提出了寻找ROC曲线的AUCH凸壳下面积(AUCH of AUCHS)的新方案。我们观察到,当宏观特征的数量增加到5个以上时,一些分类器的AUCH饱和甚至减少,这说明了维数的诅咒。然后,我们使用遗传编程来组合分类器,从而进化出最优组合分类器(OCC),产生比单个分类器更好的性能。我们发现,仅使用两个特征,OCC的性能与使用20个宏特征的原始分类器相当。当训练与测试比为1:3时,其产生的真阳性率高达0.94,对应的假阳性率低至0.15。我们还观察到,分类器的异质组合比同质组合更有希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
22
期刊最新文献
On the optimal multi-objective design of fractional order PID controller with antlion optimization Eternal 1-security number of a fuzzy graph with level J Interval type-2 fuzzy approach for retinopathy detection in fundus images DeepGAN: Utilizing generative adversarial networks for improved deep learning Fast retrieval of multi-modal embeddings for e-commerce applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1