Deep Learning concepts for genomics : an overview

Merouane Elazami Elhassani, Loïc Maisonnasse, Antoine Olgiati, Rey Jerome, Majda Rehali, P. Duroux, V. Giudicelli, S. Kossida
{"title":"Deep Learning concepts for genomics : an overview","authors":"Merouane Elazami Elhassani, Loïc Maisonnasse, Antoine Olgiati, Rey Jerome, Majda Rehali, P. Duroux, V. Giudicelli, S. Kossida","doi":"10.14806/ej.27.0.990","DOIUrl":null,"url":null,"abstract":"Nowadays, Deep Learning is taking the world by a storm, known as a technology that makes use of Artificial Neural Networks to automatically extrapolate knowledge from a training data set, then uses this knowledge to give predictions for unseen samples. This data driven paradigm gained a widespread adoption in many disciplines, from handwriting recognition, driving an autonomous car to cracking the 50-year-old protein folding problem. With this review, we shed some light on the concepts of Deep Learning and provide some visualizations, skim over the different architectures such as Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and touch upon the modern architectures such as Transformers and BERT. We also provide various examples targeting the genomics field, reference utilities, libraries useful for newcomers and disseminate our feedback.","PeriodicalId":72893,"journal":{"name":"EMBnet.journal","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBnet.journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14806/ej.27.0.990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, Deep Learning is taking the world by a storm, known as a technology that makes use of Artificial Neural Networks to automatically extrapolate knowledge from a training data set, then uses this knowledge to give predictions for unseen samples. This data driven paradigm gained a widespread adoption in many disciplines, from handwriting recognition, driving an autonomous car to cracking the 50-year-old protein folding problem. With this review, we shed some light on the concepts of Deep Learning and provide some visualizations, skim over the different architectures such as Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and touch upon the modern architectures such as Transformers and BERT. We also provide various examples targeting the genomics field, reference utilities, libraries useful for newcomers and disseminate our feedback.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因组学的深度学习概念:概述
如今,深度学习正在风靡全球,它是一种利用人工神经网络从训练数据集中自动推断知识,然后利用这些知识对未见过的样本进行预测的技术。这种数据驱动的范式在许多学科中得到了广泛的采用,从手写识别、自动驾驶汽车到破解已有50年历史的蛋白质折叠问题。通过这篇综述,我们揭示了一些深度学习的概念,并提供了一些可视化,浏览了不同的架构,如深度神经网络(DNN),卷积神经网络(CNN),循环神经网络(RNN),并触及了现代架构,如变形金刚和BERT。我们还提供了针对基因组学领域的各种示例,参考实用程序,对新手有用的库,并传播我们的反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Milk exosomes and a new way of communication between mother and child Exosomal Epigenetics Fingerprinting Breast Milk; insights into Milk Exosomics Ds-Seq: An Integrated Pipeline for In Silico Small RNA Se-quence Analysis for Host-pathogen Interaction Studies The Intersection of Artificial Intelligence and Precision Endocrinology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1