Fully Distributed Optimization-Based CAV Platooning Control Under Linear Vehicle Dynamics

Transp. Sci. Pub Date : 2021-03-20 DOI:10.13016/M29FWP-JWCG
Jinglai Shen, Eswar Kumar H. Kammara, Lili Du
{"title":"Fully Distributed Optimization-Based CAV Platooning Control Under Linear Vehicle Dynamics","authors":"Jinglai Shen, Eswar Kumar H. Kammara, Lili Du","doi":"10.13016/M29FWP-JWCG","DOIUrl":null,"url":null,"abstract":"This paper develops distributed optimization-based, platoon-centered connected and autonomous vehicle (CAV) car-following schemes, motivated by the recent interest in CAV platooning technologies. Various distributed optimization or control schemes have been developed for CAV platooning. However, most existing distributed schemes for platoon centered CAV control require either centralized data processing or centralized computation in at least one step of their schemes, referred to as partially distributed schemes. In this paper, we develop fully distributed optimization based, platoon centered CAV platooning control under the linear vehicle dynamics via the model predictive control approach with a general prediction horizon. These fully distributed schemes do not require centralized data processing or centralized computation through the entire schemes. To develop these schemes, we propose a new formulation of an objective function and a decomposition method that decomposes a densely coupled central objective function into the sum of multiple locally coupled functions whose coupling satisfies the network topology constraint. We then exploit locally coupled optimization and operator splitting methods to develop fully distributed schemes. Control design and stability analysis is carried out to achieve desired traffic transient performance and asymptotic stability. Numerical tests demonstrate the effectiveness of the proposed fully distributed schemes and CAV platooning control.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":"148 1","pages":"381-403"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13016/M29FWP-JWCG","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper develops distributed optimization-based, platoon-centered connected and autonomous vehicle (CAV) car-following schemes, motivated by the recent interest in CAV platooning technologies. Various distributed optimization or control schemes have been developed for CAV platooning. However, most existing distributed schemes for platoon centered CAV control require either centralized data processing or centralized computation in at least one step of their schemes, referred to as partially distributed schemes. In this paper, we develop fully distributed optimization based, platoon centered CAV platooning control under the linear vehicle dynamics via the model predictive control approach with a general prediction horizon. These fully distributed schemes do not require centralized data processing or centralized computation through the entire schemes. To develop these schemes, we propose a new formulation of an objective function and a decomposition method that decomposes a densely coupled central objective function into the sum of multiple locally coupled functions whose coupling satisfies the network topology constraint. We then exploit locally coupled optimization and operator splitting methods to develop fully distributed schemes. Control design and stability analysis is carried out to achieve desired traffic transient performance and asymptotic stability. Numerical tests demonstrate the effectiveness of the proposed fully distributed schemes and CAV platooning control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性车辆动力学下基于全分布优化的自动驾驶汽车队列控制
本文开发了基于分布式优化、以队列为中心的联网和自动驾驶汽车(CAV)汽车跟随方案,其动机是最近对CAV队列驾驶技术的兴趣。针对自动驾驶汽车的队列,人们开发了各种分布式优化或控制方案。然而,大多数现有的以排为中心的CAV控制的分布式方案在其方案中至少有一步需要集中数据处理或集中计算,称为部分分布式方案。本文采用具有一般预测视界的模型预测控制方法,研究了线性车辆动力学下基于全分布优化、以队列为中心的CAV队列控制。这些完全分布式的方案不需要通过整个方案进行集中的数据处理或集中的计算。为了开发这些方案,我们提出了一种新的目标函数公式和一种分解方法,该方法将密集耦合的中心目标函数分解为多个局部耦合函数的和,这些局部耦合函数的耦合满足网络拓扑约束。然后,我们利用局部耦合优化和算子分裂方法来开发完全分布式的方案。为了达到理想的交通暂态性能和渐近稳定,进行了控制设计和稳定性分析。数值实验验证了所提出的全分布式方案和CAV队列控制的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Air Quality on Housing Location: A Predictive Dynamic Continuum User-Optimal Approach Transportation in the Sharing Economy Scheduling Vehicles with Spatial Conflicts Differentiated Pricing of Shared Mobility Systems Considering Network Effects Using COVID-19 Data on Vaccine Shipments and Wastage to Inform Modeling and Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1