Application of B and Li isotope systematics for detecting chemical disturbance in groundwater associated with large shallow inland earthquakes in Kumamoto, Japan

IF 1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geochemical Journal Pub Date : 2021-01-01 DOI:10.2343/geochemj.2.0633
M. Tanimizu, N. Sugimoto, T. Hosono, C. Kuribayashi, T. Morimoto, A. Ito, R. Umam, Y. Nishio, K. Nagaishi, T. Ishikawa
{"title":"Application of B and Li isotope systematics for detecting chemical disturbance in groundwater associated with large shallow inland earthquakes in Kumamoto, Japan","authors":"M. Tanimizu, N. Sugimoto, T. Hosono, C. Kuribayashi, T. Morimoto, A. Ito, R. Umam, Y. Nishio, K. Nagaishi, T. Ishikawa","doi":"10.2343/geochemj.2.0633","DOIUrl":null,"url":null,"abstract":"Copyright © 2021 by The Geochemical Society of Japan. caused by such contamination is sometimes enhanced by anthropogenic activities such as excessive pumping of groundwater (Smith et al., 2018; Jasechko et al., 2020). In addition, natural disasters such as large earthquakes can also trigger these problems. By analyzing the major ion concentrations, trace element concentrations, and stable isotope ratios of water molecules, several studies have described changes in the natural composition of groundwater in response to seismotectonic activities (Tsunogai and Wakita, 1995; Manga and Rowland, 2009; Barberio et al., 2017; Skelton et al., 2019). However, these changes have been rarely described using stable isotope ratios of dissolved trace elements (Poitrasson et al., 1999; Schuessler et al., 2016). The detailed mechanisms and processes of hydrochemical changes in the regional groundwater system of Kumamoto region of southern Japan in response to the Mw 7.0 Kumamoto crustal earthquake of 2016 were previously investigated using a high-resolution well monitoring network. The results suggested that a co-seismic groundwater drawdown surrounding the epicenter was Application of B and Li isotope systematics for detecting chemical disturbance in groundwater associated with large shallow inland earthquakes in Kumamoto, Japan","PeriodicalId":12682,"journal":{"name":"Geochemical Journal","volume":"60 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2343/geochemj.2.0633","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

Copyright © 2021 by The Geochemical Society of Japan. caused by such contamination is sometimes enhanced by anthropogenic activities such as excessive pumping of groundwater (Smith et al., 2018; Jasechko et al., 2020). In addition, natural disasters such as large earthquakes can also trigger these problems. By analyzing the major ion concentrations, trace element concentrations, and stable isotope ratios of water molecules, several studies have described changes in the natural composition of groundwater in response to seismotectonic activities (Tsunogai and Wakita, 1995; Manga and Rowland, 2009; Barberio et al., 2017; Skelton et al., 2019). However, these changes have been rarely described using stable isotope ratios of dissolved trace elements (Poitrasson et al., 1999; Schuessler et al., 2016). The detailed mechanisms and processes of hydrochemical changes in the regional groundwater system of Kumamoto region of southern Japan in response to the Mw 7.0 Kumamoto crustal earthquake of 2016 were previously investigated using a high-resolution well monitoring network. The results suggested that a co-seismic groundwater drawdown surrounding the epicenter was Application of B and Li isotope systematics for detecting chemical disturbance in groundwater associated with large shallow inland earthquakes in Kumamoto, Japan
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
B、Li同位素系统在熊本内陆大浅层地震地下水化学扰动探测中的应用
日本地球化学学会版权所有©2021。这种污染造成的污染有时会因人为活动而加剧,例如过度抽取地下水(Smith等人,2018;Jasechko et al., 2020)。此外,大地震等自然灾害也会引发这些问题。通过分析水分子的主要离子浓度、微量元素浓度和稳定同位素比率,一些研究描述了地下水自然组成对地震构造活动的变化(Tsunogai和Wakita, 1995;Manga and Rowland, 2009;Barberio et al., 2017;Skelton et al., 2019)。然而,很少使用溶解微量元素的稳定同位素比率来描述这些变化(Poitrasson等人,1999;Schuessler et al., 2016)。利用高分辨率井监测网络,研究了2016年日本南部熊本地区7.0级地震后地下水系统水化学变化的详细机制和过程。应用B、Li同位素系统检测熊本地区内陆大浅层地震地下水化学扰动
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochemical Journal
Geochemical Journal 地学-地球化学与地球物理
CiteScore
1.70
自引率
12.50%
发文量
11
审稿时长
6 months
期刊介绍: Geochemical Journal is an international journal devoted to original research papers in geochemistry and cosmochemistry. It is the primary journal of the Geochemical Society of Japan. Areas of research are as follows: Cosmochemistry; Mineral and Rock Chemistry; Volcanology and Hydrothermal Chemistry; Isotope Geochemistry and Geochronology; Atmospheric Chemistry; Hydro- and Marine Chemistry; Organic Geochemistry; Environmental Chemistry.
期刊最新文献
Water quality characteristics and dynamics of groundwater and spring water revealed by multi-tracers in Oshino, Yamanashi, Japan U-Pb ages and REE compositions of zircon in megacrystic phengite-bearing quartz vein from the Lanterman Range, northern Victoria Land, Antarctica Abiotic formation of ribose 5′-phosphate from ribose and apatite with carbonate- and formate-rich solutions Introducing Atmospheric Photochemical Isotopic Processes to the PATMO atmospheric code Petrogenesis of Butajira-Kibet Quaternary Basaltic Rocks; Central Main Ethiopian Rift
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1