{"title":"Modeling the impact of COVID-19 on transportation at later stage of the pandemic: A case study of Utah","authors":"","doi":"10.1080/15472450.2022.2157212","DOIUrl":null,"url":null,"abstract":"<div><p>The global COVID-19 pandemic has had a great impact on transportation across the United States. However, there is a lack of studies investigating the pandemic’s impact on vehicular traffic at the later stage of the pandemic. Therefore, this paper studies the change of freeway traffic patterns in two metropolitan counties in the State of Utah at the latter stage of the pandemic. We found that with the relaxation of travel restriction and the COVID vaccine, vehicular traffic has recovered to equaling, if not exceeding, pre-pandemic levels. Truck traffic is higher than the pre-pandemic level due to the growth of online shopping and on-demand delivery. To help responsive agencies to prepare for the near-future traffic pattern, a traffic prediction model based on an innovative approach integrating machine learning with graph theory is proposed. The evaluation shows that the proposed prediction model has a desirable performance. The mean absolute percentage prediction error is between 0.38% and 1.74% for different jurisdictions. On average, the modal outperforms the traditional long short-term memory model by 31.20% in terms of root mean squared prediction error.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 4","pages":"Pages 544-554"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023000348","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The global COVID-19 pandemic has had a great impact on transportation across the United States. However, there is a lack of studies investigating the pandemic’s impact on vehicular traffic at the later stage of the pandemic. Therefore, this paper studies the change of freeway traffic patterns in two metropolitan counties in the State of Utah at the latter stage of the pandemic. We found that with the relaxation of travel restriction and the COVID vaccine, vehicular traffic has recovered to equaling, if not exceeding, pre-pandemic levels. Truck traffic is higher than the pre-pandemic level due to the growth of online shopping and on-demand delivery. To help responsive agencies to prepare for the near-future traffic pattern, a traffic prediction model based on an innovative approach integrating machine learning with graph theory is proposed. The evaluation shows that the proposed prediction model has a desirable performance. The mean absolute percentage prediction error is between 0.38% and 1.74% for different jurisdictions. On average, the modal outperforms the traditional long short-term memory model by 31.20% in terms of root mean squared prediction error.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.