{"title":"A non-linear mixed model approach for detecting outlying profiles","authors":"A. V. Quevedo, G. Vining","doi":"10.1080/00224065.2023.2217363","DOIUrl":null,"url":null,"abstract":"Abstract In parametric non-linear profile modeling, it is crucial to map the impact of model parameters to a single metric. According to the profile monitoring literature, using multivariate T statistic to monitor the stability of the parameters simultaneously is a common approach. However, this approach only focuses on the estimated parameters of the non-linear model and treats them as separate but correlated quality characteristics of the process. Consequently, they do not take full advantage of the model structure. To address this limitation, we propose a procedure to monitor profiles based on a non-linear mixed model that considers the proper variance-covariance structure. Our proposed method is based on the concept of externally studentized residuals to test whether a given profile significantly deviates from the other profiles in the non-linear mixed model. The results show that our control chart is effective and appears to perform better than the T chart.","PeriodicalId":54769,"journal":{"name":"Journal of Quality Technology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00224065.2023.2217363","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In parametric non-linear profile modeling, it is crucial to map the impact of model parameters to a single metric. According to the profile monitoring literature, using multivariate T statistic to monitor the stability of the parameters simultaneously is a common approach. However, this approach only focuses on the estimated parameters of the non-linear model and treats them as separate but correlated quality characteristics of the process. Consequently, they do not take full advantage of the model structure. To address this limitation, we propose a procedure to monitor profiles based on a non-linear mixed model that considers the proper variance-covariance structure. Our proposed method is based on the concept of externally studentized residuals to test whether a given profile significantly deviates from the other profiles in the non-linear mixed model. The results show that our control chart is effective and appears to perform better than the T chart.
期刊介绍:
The objective of Journal of Quality Technology is to contribute to the technical advancement of the field of quality technology by publishing papers that emphasize the practical applicability of new techniques, instructive examples of the operation of existing techniques and results of historical researches. Expository, review, and tutorial papers are also acceptable if they are written in a style suitable for practicing engineers.
Sample our Mathematics & Statistics journals, sign in here to start your FREE access for 14 days