Nonlinear Model Reduction for Automotive System Descriptions

Zeyu Liu, J. Wagner
{"title":"Nonlinear Model Reduction for Automotive System Descriptions","authors":"Zeyu Liu, J. Wagner","doi":"10.1115/imece2001/dsc-24517","DOIUrl":null,"url":null,"abstract":"\n The mathematical modeling of dynamic systems is an important task in the design, analysis, and implementation of advanced automotive control systems. Although most vehicle control algorithms tend to use model-free calibration architectures, a need exists to migrate to model-based control algorithms which offer greater operating performance. However, in many instances, the analytical descriptions are too complex for real-time powertrain and chassis model-based control algorithms. Therefore, model reduction strategies may be applied to transform the original model into a simplified lower-order form while preserving the dynamic characteristics of the original high-order system. In this paper, an empirical gramian balanced nonlinear model reduction strategy is examined for the simplification process of dynamic system descriptions. The empirical gramians may be computed using either experimental or simulation data. These gramians are then balanced and unimportant system dynamics truncated. For comparison purposes, a Taylor Series linearization will also be introduced to linearize the original nonlinear system about an equilibrium operating point and then a balanced realization linear reduction strategy will be applied. To demonstrate the functionality of each model reduction strategy, two nonlinear dynamic system models are investigated and respective transient performances compared.","PeriodicalId":90691,"journal":{"name":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/dsc-24517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mathematical modeling of dynamic systems is an important task in the design, analysis, and implementation of advanced automotive control systems. Although most vehicle control algorithms tend to use model-free calibration architectures, a need exists to migrate to model-based control algorithms which offer greater operating performance. However, in many instances, the analytical descriptions are too complex for real-time powertrain and chassis model-based control algorithms. Therefore, model reduction strategies may be applied to transform the original model into a simplified lower-order form while preserving the dynamic characteristics of the original high-order system. In this paper, an empirical gramian balanced nonlinear model reduction strategy is examined for the simplification process of dynamic system descriptions. The empirical gramians may be computed using either experimental or simulation data. These gramians are then balanced and unimportant system dynamics truncated. For comparison purposes, a Taylor Series linearization will also be introduced to linearize the original nonlinear system about an equilibrium operating point and then a balanced realization linear reduction strategy will be applied. To demonstrate the functionality of each model reduction strategy, two nonlinear dynamic system models are investigated and respective transient performances compared.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汽车系统描述的非线性模型简化
动态系统的数学建模是先进汽车控制系统设计、分析和实现中的一项重要任务。尽管大多数车辆控制算法倾向于使用无模型校准架构,但仍需要迁移到基于模型的控制算法,以提供更好的操作性能。然而,在许多情况下,分析描述对于基于实时动力系统和底盘模型的控制算法来说过于复杂。因此,可以采用模型约简策略将原模型转化为简化的低阶形式,同时保留原高阶系统的动态特性。本文研究了一种经验格兰曼平衡非线性模型约简策略,用于动态系统描述的简化过程。经验公式可以用实验数据或模拟数据来计算。然后平衡这些语法,截断不重要的系统动力学。为了比较,我们还将引入泰勒级数线性化来对原始非线性系统进行线性化,然后采用平衡实现线性化策略。为了证明每种模型约简策略的功能,研究了两种非线性动态系统模型,并比较了各自的瞬态性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STEERABLE NEEDLE TRAJECTORY FOLLOWING IN THE LUNG: TORSIONAL DEADBAND COMPENSATION AND FULL POSE ESTIMATION WITH 5DOF FEEDBACK FOR NEEDLES PASSING THROUGH FLEXIBLE ENDOSCOPES. A SERIES ELASTIC ACTUATOR DESIGN AND CONTROL IN A LINKAGE BASED HAND EXOSKELETON. OBSERVER-BASED CONTROL OF A DUAL-STAGE PIEZOELECTRIC SCANNER. HUMAN-INSPIRED ALGEBRAIC CURVES FOR WEARABLE ROBOT CONTROL. CONTROLLING PHYSICAL INTERACTIONS: HUMANS DO NOT MINIMIZE MUSCLE EFFORT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1