Deep Learning for Semantic Segmentation of UAV Videos

Yiwen Wang, Ye Lyu, Yanpeng Cao, M. Yang
{"title":"Deep Learning for Semantic Segmentation of UAV Videos","authors":"Yiwen Wang, Ye Lyu, Yanpeng Cao, M. Yang","doi":"10.1109/IGARSS.2019.8899786","DOIUrl":null,"url":null,"abstract":"As one of the key problems in both remote sensing and computer vision, video semantic segmentation has been attracting increasing amounts of attention. Using video segmentation technique for Unmanned Aerial Vehicle (UAV) data processing is also a popular application. Previous methods extended single image segmentation approaches to multiple frames. The temporal dependencies are ignored in these methods. This paper proposes a novel segmentation method to solve this problem. Combining the fully convolutional networks (FCN) and the Convolution Long Short Term Memory (Conv-LSTM) together, we segment the sequence of the video frames instead of segmenting each individual frame separately. FCN serves as the frame-based segmentation method. Conv-LSTM makes use of the temporal information between consecutive frames. Experimental results show the superiority of this method especially in some classes compared to the single image segmentation model using video dataset from UAV.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"38 1","pages":"2459-2462"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8899786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

As one of the key problems in both remote sensing and computer vision, video semantic segmentation has been attracting increasing amounts of attention. Using video segmentation technique for Unmanned Aerial Vehicle (UAV) data processing is also a popular application. Previous methods extended single image segmentation approaches to multiple frames. The temporal dependencies are ignored in these methods. This paper proposes a novel segmentation method to solve this problem. Combining the fully convolutional networks (FCN) and the Convolution Long Short Term Memory (Conv-LSTM) together, we segment the sequence of the video frames instead of segmenting each individual frame separately. FCN serves as the frame-based segmentation method. Conv-LSTM makes use of the temporal information between consecutive frames. Experimental results show the superiority of this method especially in some classes compared to the single image segmentation model using video dataset from UAV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的无人机视频语义分割
视频语义分割作为遥感和计算机视觉领域的关键问题之一,越来越受到人们的关注。利用视频分割技术进行无人机数据处理也是一个热门应用。以前的方法将单个图像分割方法扩展到多帧。这些方法忽略了时间依赖关系。本文提出了一种新的分割方法来解决这一问题。将全卷积网络(FCN)和卷积长短期记忆(convl - lstm)相结合,对视频帧序列进行分割,而不是单独对每个帧进行分割。FCN作为基于帧的分割方法。卷积- lstm利用了连续帧之间的时间信息。实验结果表明,与基于无人机视频数据集的单一图像分割模型相比,该方法在某些类别上具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1