Recommendation of Healthcare Services Based on an Embedded User Profile Model

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal on Semantic Web and Information Systems Pub Date : 2022-01-01 DOI:10.4018/ijswis.313198
Jianmao Xiao, Xinyi Liu, Jia Zeng, Yuanlong Cao, Zhiyong Feng
{"title":"Recommendation of Healthcare Services Based on an Embedded User Profile Model","authors":"Jianmao Xiao, Xinyi Liu, Jia Zeng, Yuanlong Cao, Zhiyong Feng","doi":"10.4018/ijswis.313198","DOIUrl":null,"url":null,"abstract":"In recent years, as the demand for senior care services has further increased, it has become more difficult to obtain matching services from the vast amount of data. Therefore, this paper proposes a service recommendation framework PCE-CF based on an embedded user portrait model. The framework accurately describes the elderly users through four dimensions—population, society, consumption, and health—and constructs the user portrait model by embedding tags. The embedded vector of each older man is learned through the deep learning model, and different feature groups are meaningfully expressed in the transformation space. In addition, location context and dynamic interest model are introduced to process embedded vectors, and users' service preferences are predicted according to their dynamic behaviors. The experiment results show that the PCE-CF framework proposed in this paper can improve the recommendation algorithm's efficiency and have higher feasibility in personalized service recommendations.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"231 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.313198","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

Abstract

In recent years, as the demand for senior care services has further increased, it has become more difficult to obtain matching services from the vast amount of data. Therefore, this paper proposes a service recommendation framework PCE-CF based on an embedded user portrait model. The framework accurately describes the elderly users through four dimensions—population, society, consumption, and health—and constructs the user portrait model by embedding tags. The embedded vector of each older man is learned through the deep learning model, and different feature groups are meaningfully expressed in the transformation space. In addition, location context and dynamic interest model are introduced to process embedded vectors, and users' service preferences are predicted according to their dynamic behaviors. The experiment results show that the PCE-CF framework proposed in this paper can improve the recommendation algorithm's efficiency and have higher feasibility in personalized service recommendations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于嵌入式用户配置文件模型的医疗保健服务推荐
近年来,随着养老服务需求的进一步增加,从海量的数据中获取匹配的服务变得越来越困难。为此,本文提出了一种基于嵌入式用户画像模型的服务推荐框架PCE-CF。该框架通过人口、社会、消费、健康四个维度对老年用户进行准确描述,并通过嵌入标签构建用户画像模型。通过深度学习模型学习每个老年人的嵌入向量,并在变换空间中有意义地表达不同的特征组。此外,引入位置上下文和动态兴趣模型对嵌入向量进行处理,并根据用户的动态行为预测用户的服务偏好。实验结果表明,本文提出的PCE-CF框架可以提高推荐算法的效率,在个性化服务推荐中具有更高的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
期刊最新文献
A Web Semantic-Based Text Analysis Approach for Enhancing Named Entity Recognition Using PU-Learning and Negative Sampling Blockchain-Based Lightweight Authentication Mechanisms for Industrial Internet of Things and Information Systems A Network Intrusion Detection Method for Information Systems Using Federated Learning and Improved Transformer Semantic Trajectory Planning for Industrial Robotics Digital Copyright Management Mechanism Based on Dynamic Encryption for Multiplatform Browsers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1