Near-Borehole Imaging Using Full-Waveform Sonic Data

Hala Alqatari, T. Tonellot, M. Mubarak
{"title":"Near-Borehole Imaging Using Full-Waveform Sonic Data","authors":"Hala Alqatari, T. Tonellot, M. Mubarak","doi":"10.2118/204765-ms","DOIUrl":null,"url":null,"abstract":"\n This work presents a full waveform sonic (FWS) dataset processing to generate high-resolution images of the near-borehole area. The dataset was acquired in a nearly horizontal well over a distance of 5400 feet. Multiple formation boundaries can be identified on the final image and tracked at up to 200 feet deep, along the wellbore's trajectory.\n We first present a new preprocessing sequence to prepare the sonic data for imaging. This sequence leverages denoising algorithms used in conventional surface seismic data processing to remove unwanted components of the recorded data that could harm the imaging results. We then apply a reverse time migration algorithm to the data at different processing stages to assess the impact of the main processing steps on the final image.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Tue, November 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204765-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a full waveform sonic (FWS) dataset processing to generate high-resolution images of the near-borehole area. The dataset was acquired in a nearly horizontal well over a distance of 5400 feet. Multiple formation boundaries can be identified on the final image and tracked at up to 200 feet deep, along the wellbore's trajectory. We first present a new preprocessing sequence to prepare the sonic data for imaging. This sequence leverages denoising algorithms used in conventional surface seismic data processing to remove unwanted components of the recorded data that could harm the imaging results. We then apply a reverse time migration algorithm to the data at different processing stages to assess the impact of the main processing steps on the final image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用全波形声波数据进行近井眼成像
这项工作提出了一种全波形声波(FWS)数据集处理方法,以生成近井眼区域的高分辨率图像。该数据集是在5400英尺的近水平井中获得的。在最终图像上可以识别多个地层边界,并沿着井眼轨迹跟踪至200英尺深。我们首先提出了一个新的预处理序列来准备成像的声波数据。该序列利用常规地面地震数据处理中使用的去噪算法,去除记录数据中可能影响成像结果的无用成分。然后,我们对不同处理阶段的数据应用反向时间迁移算法,以评估主要处理步骤对最终图像的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large Scale Placement For Multilateral Wells Using Network Optimization How to Make Sensitive Formations Produce Oil: Case Study of the Complex Laboratory Approach to Stimulation Fluid Optimization Novel Analytical Solution and Type-Curves for Lost-Circulation Diagnostics of Drilling Mud in Fractured Formation A Novel Workflow for Geosteering a Horizontal Well in a Low Resistivity Contrast Anisotropic Environment: A Case Study in Semoga Field, Indonesia Uncertainty Quantification and Optimization of Deep Learning for Fracture Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1