{"title":"Development of a chip-based micromachined THz-spectrometer","authors":"Xiaohuan Fu, K. Attenkofer, T.T.Y. Wong","doi":"10.1109/IRMMW-THZ.2011.6104948","DOIUrl":null,"url":null,"abstract":"We present a coplanar waveguide design with integrated photoconductive transceivers; the system is fabricated on a 1.4-μm-thick SiO2/Si3N4 membrane supported by a micromachined silicon substrate. LTG GaAs is used as photon absorbing material of the photoconductive switches allowing full electron mobility at strongly reduced carrier-lifetime. By combining this circuit with a bonded sample cell, we are able to measure transmitted, reflected intensity and its phase correlations. The system was characterized by theoretical calculation and simulations.","PeriodicalId":6353,"journal":{"name":"2011 International Conference on Infrared, Millimeter, and Terahertz Waves","volume":"36 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRMMW-THZ.2011.6104948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a coplanar waveguide design with integrated photoconductive transceivers; the system is fabricated on a 1.4-μm-thick SiO2/Si3N4 membrane supported by a micromachined silicon substrate. LTG GaAs is used as photon absorbing material of the photoconductive switches allowing full electron mobility at strongly reduced carrier-lifetime. By combining this circuit with a bonded sample cell, we are able to measure transmitted, reflected intensity and its phase correlations. The system was characterized by theoretical calculation and simulations.