G. Nicholson, Chao Zhang, L. Duan, M. Malik, Fei Li, A. Uzun
{"title":"Direct Numerical Simulation of Receptivity to Roughness in a Swept-Wing Boundary Layer at High Reynolds Numbers","authors":"G. Nicholson, Chao Zhang, L. Duan, M. Malik, Fei Li, A. Uzun","doi":"10.2514/6.2018-3076","DOIUrl":null,"url":null,"abstract":"Direct numerical simulations (DNS) are performed to examine the receptivity to roughness in a spatially developing three-dimensional boundary layer over an infinite-swept natural-laminar-flow wing at a freestream Mach number of 0 . 75 and a chord Reynolds number of approximately 25 million based on the long, swept chord. Stationary crossflow disturbances are excited by applying either critically spaced discrete cylinders of micron size or naturally occurring distributed roughness in the leading-edge region. The DNS data show that the spanwise spectral content of the excited crossflow disturbances is highly dependent upon the shape of roughness elements, and the initial growth of the crossflow structures is a nonlinear function of the element height. The linear growth rate of the excited crossflow disturbances predicted by DNS shows good agreement with linear parab-olized stability equations. The receptivity study lays the foundation for investigating the stabilization of the naturally most unstable steady crossflow mode by using spanwise periodic DREs","PeriodicalId":93061,"journal":{"name":"48th AIAA Fluid Dynamics Conference 2018 : held at the AIAA Aviation Forum 2018 : Atlanta, Georgia, USA, 25-29 June 2018. AIAA Fluid Dynamics Conference (48th : 2018 : Atlanta, Ga.)","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"48th AIAA Fluid Dynamics Conference 2018 : held at the AIAA Aviation Forum 2018 : Atlanta, Georgia, USA, 25-29 June 2018. AIAA Fluid Dynamics Conference (48th : 2018 : Atlanta, Ga.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2018-3076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Direct numerical simulations (DNS) are performed to examine the receptivity to roughness in a spatially developing three-dimensional boundary layer over an infinite-swept natural-laminar-flow wing at a freestream Mach number of 0 . 75 and a chord Reynolds number of approximately 25 million based on the long, swept chord. Stationary crossflow disturbances are excited by applying either critically spaced discrete cylinders of micron size or naturally occurring distributed roughness in the leading-edge region. The DNS data show that the spanwise spectral content of the excited crossflow disturbances is highly dependent upon the shape of roughness elements, and the initial growth of the crossflow structures is a nonlinear function of the element height. The linear growth rate of the excited crossflow disturbances predicted by DNS shows good agreement with linear parab-olized stability equations. The receptivity study lays the foundation for investigating the stabilization of the naturally most unstable steady crossflow mode by using spanwise periodic DREs